On the Number of Irreducible Components of the Moduli Space of Semistable Reflexive Rank 2 Sheaves on the Projective Space

被引:2
|
作者
Kytmanov, A. A. [1 ,2 ]
Osipov, N. N. [3 ]
Tikhomirov, S. A. [4 ]
机构
[1] Russian Technol Univ, MIREA, Moscow, Russia
[2] Plekhanov Russian Univ Econ, Moscow, Russia
[3] Siberian Fed Univ, Krasnoyarsk, Russia
[4] Ushinsky Yaroslavl State Pedag Univ, Yaroslavl, Russia
关键词
semistable reflexive sheaf; Chern classes; moduli space; 512; 7; BUNDLES;
D O I
10.1134/S0037446623010123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2017, Jardim, Markushevich, and Tikhomirov found a new infinite seriesof irreducible components of the moduli space of semistable nonlocally free reflexiverank 2 sheaves on the complex three-dimensional projective space with even first Chernclass whose second and third Chern classes can be represented as polynomials of a specialform in three integer variables. A similar series for reflexive sheaves with odd firstChern class was found in 2022 by Almeida, Jardim, and Tikhomirov. In thisarticle, we prove the uniqueness of the components in these series for the Chern classesrepresented by the above-mentioned polynomials and propose some criteria for the existenceof these components. We formulate a conjecture on the number of components of the modulispace of stable rank 2 sheaves on a three-dimensional projective space such thatthe generic points of these components correspond to isomorphism classes of reflexivesheaves with fixed Chern classes defined by the same polynomials.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [41] The derived moduli space of stable sheaves
    Behrend, Kai
    Ciocan-Fontanine, Ionut
    Hwang, Junho
    Rose, Michael
    ALGEBRA & NUMBER THEORY, 2014, 8 (04) : 781 - 812
  • [42] Branes in the moduli space of framed sheaves
    Franco, Emilio
    Jardim, Marcos
    Marchesi, Simone
    BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (04): : 353 - 383
  • [43] The moduli space of points in quaternionic projective space
    Cao, Wensheng
    HIROSHIMA MATHEMATICAL JOURNAL, 2022, 52 (03) : 255 - 286
  • [44] TRIANGULAR SHEAVES ON A PROJECTIVE-SPACE
    DECAMPOS, MB
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (03): : 279 - 293
  • [45] Projective moduli space for the polynomials
    Fujimura, Masayo
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 (06): : 787 - 801
  • [47] Moduli of Sheaves Supported on Quartic Space Curves
    Choi, Jinwon
    Chung, Kiryong
    Maican, Mario
    MICHIGAN MATHEMATICAL JOURNAL, 2016, 65 (03) : 637 - 671
  • [48] Picard bundle on the moduli space of torsionfree sheaves
    Usha N Bhosle
    Proceedings - Mathematical Sciences, 2020, 130
  • [49] The effective cone of the moduli space of sheaves on the plane
    Coskun, Izzet
    Huizenga, Jack
    Woolf, Matthew
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (05) : 1421 - 1467
  • [50] BLOWING-UPS DESCRIBING THE POLARIZATION CHANGE OF MODULI SCHEMES OF SEMISTABLE SHEAVES OF GENERAL RANK
    Yamada, Kimiko
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (08) : 3094 - 3110