End-to-End Learning for Visual Navigation of Forest Environments

被引:3
|
作者
Niu, Chaoyue [1 ]
Zauner, Klaus-Peter [1 ]
Tarapore, Danesh [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, England
来源
FORESTS | 2023年 / 14卷 / 02期
关键词
off-road visual navigation; end-to-end learning; multiclass classification; low-viewpoint forest navigation; low-cost sensors; small-sized rovers; sparse swarms; ROBOT; ROBUST; MANAGEMENT; ROAD;
D O I
10.3390/f14020268
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Off-road navigation in forest environments is a challenging problem in field robotics. Rovers are required to infer their traversability over a priori unknown and dynamically changing forest terrain using noisy onboard navigation sensors. The problem is compounded for small-sized rovers, such as that of a swarm. Their size-proportional low-viewpoint affords them a restricted view for navigation, which may be partially occluded by forest vegetation. Hand-crafted features, typically employed for terrain traversability analysis, are often brittle and may fail to discriminate obstacles in varying lighting and weather conditions. We design a low-cost navigation system tailored for small-sized forest rovers using self-learned features. The MobileNet-V1 and MobileNet-V2 models, trained following an end-to-end learning approach, are deployed to steer a mobile platform, with a human-in-the-loop, towards traversable paths while avoiding obstacles. Receiving a 128 x 96 pixel RGB image from a monocular camera as input, the algorithm running on a Raspberry Pi 4, exhibited robustness to motion blur, low lighting, shadows and high-contrast lighting conditions. It was able to successfully navigate a total of over 3 km of real-world forest terrain comprising shrubs, dense bushes, tall grass, fallen branches, fallen tree trunks, and standing trees, in over five different weather conditions and four different times of day.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] TransVG: End-to-End Visual Grounding with Transformers
    Deng, Jiajun
    Yang, Zhengyuan
    Chen, Tianlang
    Zhou, Wengang
    Li, Houqiang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 1749 - 1759
  • [42] STATISTICAL LEARNING FOR END-TO-END SIMULATIONS
    Vicent, J.
    Verrelst, J.
    Rivera-Caicedo, J. P.
    Sabater, N.
    Munoz-Mari, J.
    Camps-Valls, G.
    Moreno, J.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1699 - 1702
  • [43] END-TO-END LEARNING FOR MUSIC AUDIO
    Dieleman, Sander
    Schrauwen, Benjamin
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [44] End-to-end Learning for Graph Decomposition
    Song, Jie
    Andres, Bjoern
    Black, Michael J.
    Hilliges, Otmar
    Tang, Siyu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10092 - 10101
  • [45] Amharic OCR: An End-to-End Learning
    Belay, Birhanu
    Habtegebrial, Tewodros
    Meshesha, Million
    Liwicki, Marcus
    Belay, Gebeyehu
    Stricker, Didier
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [46] The Predictron: End-To-End Learning and Planning
    Silver, David
    van Hasselt, Hado
    Hessel, Matteo
    Schaul, Tom
    Guez, Arthur
    Harley, Tim
    Dulac-Arnold, Gabriel
    Reichert, David
    Rabinowitz, Neil
    Barret, Andre
    Degris, Thomas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [47] END-TO-END LEARNING OF COMPRESSIBLE FEATURES
    Singh, Saurabh
    Abu-El-Haija, Sami
    Johnston, Nick
    Balle, Johannes
    Shrivastava, Abhinav
    Toderici, George
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 3349 - 3353
  • [48] End-to-End Learning with Memory Models for Complex Autonomous Driving Tasks in Indoor Environments
    Lai, Zhihui
    Braunl, Thomas
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2023, 107 (03)
  • [49] End-to-End Learning with Memory Models for Complex Autonomous Driving Tasks in Indoor Environments
    Zhihui Lai
    Thomas Bräunl
    Journal of Intelligent & Robotic Systems, 2023, 107
  • [50] Feature Importance Ranking of Random Forest-Based End-to-End Learning Algorithm
    Yuan, Xiaoguang
    Liu, Shiruo
    Feng, Wei
    Dauphin, Gabriel
    REMOTE SENSING, 2023, 15 (21)