Contextualised Out-of-Distribution Detection Using Pattern Identification

被引:1
|
作者
Xu-Darme, Romain [1 ,3 ]
Girard-Satabin, Julien [1 ]
Hond, Darryl [2 ]
Incorvaia, Gabriele [2 ]
Chihani, Zakaria [1 ]
机构
[1] Univ ParisSaclay, CEA, List, F-91120 Palaiseau, France
[2] Thales UK Res Technol & Innovat, Reading, Berks, England
[3] Univ Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
基金
欧盟地平线“2020”;
关键词
Out-of-distribution detection; Explainable AI; Pattern identification; NETWORKS;
D O I
10.1007/978-3-031-40953-0_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose CODE, an extension of existing work from the field of explainable AI that identifies class-specific recurring patterns to build a robust Out-of-Distribution (OoD) detection method for visual classifiers. CODE does not require any classifier retraining and is OoD-agnostic, i.e., tuned directly to the training dataset. Crucially, pattern identification allows us to provide images from the In-Distribution (ID) dataset as reference data to provide additional context to the confidence scores. In addition, we introduce a new benchmark based on perturbations of the ID dataset that provides a known and quantifiable measure of the discrepancy between the ID and OoD datasets serving as a reference value for the comparison between OoD detection methods.
引用
下载
收藏
页码:423 / 435
页数:13
相关论文
共 50 条
  • [31] Wafer defect pattern classification with detecting out-of-distribution
    Kim, Yusung
    Cho, Donghee
    Lee, Jee-Hyong
    MICROELECTRONICS RELIABILITY, 2021, 122
  • [32] Full-Spectrum Out-of-Distribution Detection
    Jingkang Yang
    Kaiyang Zhou
    Ziwei Liu
    International Journal of Computer Vision, 2023, 131 : 2607 - 2622
  • [33] Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-Out Classifiers
    Vyas, Apoorv
    Jammalamadaka, Nataraj
    Zhu, Xia
    Das, Dipankar
    Kaul, Bharat
    Willke, Theodore L.
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 560 - 574
  • [34] CONTINUAL LEARNING FOR OUT-OF-DISTRIBUTION PEDESTRIAN DETECTION
    Molahasani, Mahdiyar
    Etemad, Ali
    Greenspan, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2685 - 2689
  • [35] Latent Transformer Models for out-of-distribution detection
    Graham, Mark S.
    Tudosiu, Petru-Daniel
    Wright, Paul
    Pinaya, Walter Hugo Lopez
    Teikari, Petteri
    Patel, Ashay
    U-King-Im, Jean-Marie
    Mah, Yee H.
    Teo, James T.
    Jager, Hans Rolf
    Werring, David
    Rees, Geraint
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [36] Boosting Out-of-distribution Detection with Typical Features
    Zhu, Yao
    Chen, Yuefeng
    Xie, Chuanlong
    Li, Xiaodan
    Zhang, Rong
    Xue, Hui
    Tian, Xiang
    Zheng, Bolun
    Chen, Yaowu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [37] Ensemble-Based Out-of-Distribution Detection
    Yang, Donghun
    Mai Ngoc, Kien
    Shin, Iksoo
    Lee, Kyong-Ha
    Hwang, Myunggwon
    ELECTRONICS, 2021, 10 (05) : 1 - 12
  • [38] Out-of-distribution detection by regaining lost clues
    Zhao, Zhilin
    Cao, Longbing
    Yu, Philip S.
    Artificial Intelligence, 2025, 339
  • [39] Heatmap-based Out-of-Distribution Detection
    Hornauer, Julia
    Belagiannis, Vasileios
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2602 - 2611
  • [40] Leveraging Visual Attention for out-of-distribution Detection
    Cultrera, Luca
    Seidenari, Lorenzo
    Del Bimbo, Alberto
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 4449 - 4458