Improved results on reachable set estimation for singularly perturbed systems with time-varying delay

被引:0
|
作者
Wang, Jiawang [1 ]
Zhang, Liang [1 ]
Zhao, Xudong [2 ]
Zhao, Ning [1 ]
机构
[1] Bohai Univ, Coll Engn, Jinzhou 121013, Liaoning, Peoples R China
[2] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Singularly perturbed systems; Linear matrix inequalities; Time-varying delay; Reachable set; SLIDING-MODE CONTROL; H-INFINITY CONTROL; STABILITY;
D O I
10.1016/j.jfranklin.2023.11.040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of reachable set estimation for singularly perturbed systems with time-varying delays and bounded perturbation is studied in this paper. Firstly, a Lyapunov-Krasovskii function related to the perturbed parameter ������ is established. Secondly, introducing a method of integral inequality scaling and eliminated the influence of singularly perturbed parameter on the system within a certain range. The system state is therefore contained in a ������-independent ellipsoid in accordance with a criterion imposed by linear matrix inequalities. Subsequently, examples are used to show that the findings are valid.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 50 条
  • [41] Reachable set estimation for uncertain nonlinear systems with time delay
    Zhang, Zhihao
    Wang, Xinsheng
    Xie, Wenbo
    Shen, Yi
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2020, 41 (05): : 1644 - 1656
  • [42] Reachable set estimation for switched positive systems with mixed time-varying delays and bounded disturbances
    Tian, Dadong
    Liu, Shutang
    Sun, Yuangong
    Xia, Jianwei
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (15): : 2003 - 2009
  • [43] Robust composite control for singularly perturbed systems with time-varying uncertainties
    Chen, YH
    Chen, JS
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1995, 117 (04): : 445 - 452
  • [44] Chang Transformation for Decoupling of Singularly Perturbed Linear Time-Varying Systems
    Yang, Xiaojing
    Zhu, J. Jim
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (06) : 1637 - 1642
  • [45] Quasidifferentiability and Uniform Observability of Linear Time-Varying Singularly Perturbed Systems
    Tsekhan, O. B.
    DIFFERENTIAL EQUATIONS, 2023, 59 (08) : 1130 - 1146
  • [46] UNIFORM ASYMPTOTIC STABILITY OF LINEAR TIME-VARYING SINGULARLY PERTURBED SYSTEMS
    JAVID, SH
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1978, 305 (01): : 27 - 37
  • [47] Quasidifferentiability and Uniform Observability of Linear Time-Varying Singularly Perturbed Systems
    O. B. Tsekhan
    Differential Equations, 2023, 59 : 1130 - 1146
  • [48] Further Results on Reachable Set Bounding for Discrete-Time System with Time-Varying Delay and Bounded Disturbance Inputs
    Kang, Wei
    Chen, Hao
    Shi, Kaibo
    Cheng, Jun
    COMPLEXITY, 2018,
  • [49] Optimal estimation for systems with time-varying delay
    Zhang, Huanshui
    Me, Lihua
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2235 - +
  • [50] Optimal estimation for systems with time-varying delay
    Zhang, H.
    Xie, L.
    Wang, W.
    IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (08): : 1391 - 1398