AUTOMATIC SIMULATION OF SAR IMAGES: COMPARING A DEEP-LEARNING BASED METHOD TO A HYBRID METHOD

被引:0
|
作者
Letheule, Nathan [1 ,2 ]
Weissgerber, Flora [1 ]
Lobry, Sylvain [2 ]
Colin, Elise [1 ]
机构
[1] Univ Paris Saclay, ONERA, DTIS Lab, Gif Sur Yvette, France
[2] Univ Paris, LIPADE, Paris, France
关键词
Simulation; Radar; Deep Learning; Remote sensing; Semantic segmentation;
D O I
10.1109/IGARSS52108.2023.10282024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study compares two approaches for simulating synthetic aperture radar (SAR) images. The first approach uses a conditional Generative Adversarial Network (cGAN) to learn statistical image distributions from optical images. In a second approach, we generate SAR images using a electromagnetic simulator taking into input material maps obtained by segmenting optical images. We propose two metrics to evaluate the quality of the simulation. We evaluate the methods on existing Sentinel-1 SAR images of France using the DREAM database. The results suggest that the physical simulator with automatically created material maps is better suited for generating realistic SAR images compared to the cGAN approach, even if a lot of work remains to be done on the complexity of the description of the scene.
引用
收藏
页码:4958 / 4961
页数:4
相关论文
共 50 条
  • [31] A Deep-learning Method for Detruncation of Attenuation Maps
    Thejaswi, Akshay
    Nivarthi, Aditya
    Beckwith, Daniel J.
    Johnson, Karen L.
    Pretorius, P. Hendrik
    Agu, Emmanuel O.
    King, Michael A.
    Lindsay, Clifford
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [32] A deep-learning method for studying magnetic superstructures
    Li, He
    Xu, Yong
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (04): : 287 - 288
  • [33] Automatic identification method of overpasses based on deep learning
    Ma Jingzhen
    Wen Bowei
    Zhang Fubing
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [34] Automatic Counting Method for Centipedes Based on Deep Learning
    Yao, Jin
    Chen, Weitao
    Wang, Tao
    Yang, Fu
    Sun, Xiaoyan
    Yao, Chong
    Jia, Liangquan
    IEEE ACCESS, 2024, 12 : 84726 - 84737
  • [35] Deep-Learning Based Web UI Automatic Programming
    Kim, Bada
    Park, Sangmin
    Won, Taeyeon
    Heo, Junyoung
    Kim, Bongjae
    PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 64 - 65
  • [36] Concatenated Deep-Learning Framework for Multitask Change Detection of Optical and SAR Images
    Du, Zhengshun
    Li, Xinghua
    Miao, Jianhao
    Huang, Yanyuan
    Shen, Huanfeng
    Zhang, Liangpei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 719 - 731
  • [37] A deep-learning reconstruction method for remote sensing images with large thick cloud cover
    Jiang, Bo
    Li, Xiaoyang
    Chong, Haozhan
    Wu, Yuwei
    Li, Yaowei
    Jia, Junhao
    Wang, Shuaibo
    Wang, Jinshuai
    Chen, Xiaoxuan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 115
  • [38] Real-Time Data Filling and Automatic Retrieval Algorithm of Road Traffic Based on Deep-Learning Method
    Zhu, Jie
    Xu, Weixiang
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 15
  • [39] An Improved Automatic Ship Detection Method in SAR Images
    Zhuo, Chen
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 2872 - 2875
  • [40] A deep learning-based automatic staging method for early endometrial cancer on MRI images
    Mao, Wei
    Chen, Chunxia
    Gao, Huachao
    Xiong, Liu
    Lin, Yongping
    FRONTIERS IN PHYSIOLOGY, 2022, 13