Einstein's equations and the pseudo-entropy of pseudo-Riemannian information manifolds

被引:1
|
作者
Alshal, Hassan [1 ]
机构
[1] Santa Clara Univ, Dept Phys, 500 El Camino Real, Santa Clara, CA 95053 USA
关键词
BLACK-HOLE ENTROPY; QUANTUM; SPACE; GRAVITY; LAWS;
D O I
10.1007/s10714-023-03130-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Motivated by the corrected form of the entropy-area law, and with the help of von Neumann entropy of quantum matter, we construct an emergent spacetime by the virtue of the geometric language of statistical information manifolds. We discuss the link between Wald and Jacobson approaches of thermodynamic/gravity correspondence and Fisher pseudo-Riemannian metric of information manifold. We derive in detail Einstein's field equations in statistical information geometric forms. This results in finding a quantum origin of a positive cosmological constant that is founded on Fisher metric. This cosmological constant resembles those found in Lovelock's theories in a de Sitter background as a result of using the complex extension of spacetime and the Gaussian exponential families of probability distributions, and we find a time varying dynamical gravitational constant as a function of Fisher metric together with the corresponding Ryu-Takayanagi formula of such system. Consequently, we obtain a dynamical equation for the entropy in information manifold using Liouville-von Neumann equation from the Hamiltonian of the system. This Hamiltonian is suggested to be non-Hermitian, which corroborates the approaches that relate non-unitary conformal field theories to information manifolds. This provides some insights on resolving "the problem of time".
引用
收藏
页数:42
相关论文
共 50 条
  • [31] Curvature measures of pseudo-Riemannian manifolds
    Bernig, Andreas
    Faifman, Dmitry
    Solanes, Gil
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (788): : 77 - 127
  • [32] ON MAXIMAL SUBMANIFOLDS IN PSEUDO-RIEMANNIAN MANIFOLDS
    SHEN, YB
    [J]. CHINESE SCIENCE BULLETIN, 1990, 35 (22): : 1932 - 1933
  • [33] Pseudo-Riemannian metrics, Kahler-Einstein metrics on Grauert tubes and harmonic Riemannian manifolds
    Aguilar, RM
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 : 1 - 17
  • [34] Cones over pseudo-Riemannian manifolds and their holonomy
    Alekseevsky, D. V.
    Cortes, V.
    Galaev, A. S.
    Leistner, T.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 : 23 - 69
  • [35] Pseudo-Riemannian manifolds with recurrent spinor fields
    Galaev, A. S.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) : 604 - 613
  • [36] Pseudo-Riemannian manifolds with simple Jacobi operators
    Bonome, A
    Castro, R
    García-Río, E
    Hervella, L
    Vázquez-Lorenzo, R
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (04) : 847 - 875
  • [37] FLAT PSEUDO-RIEMANNIAN STRUCTURES OF COMPACT MANIFOLDS
    FURNESS, P
    FEDIDA, E
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (03): : 169 - 171
  • [38] Pseudo-Riemannian Manifolds with Commuting Jacobi Operators
    Brozos-Vázquez M.
    Gilkey P.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2006, 55 (2) : 163 - 174
  • [39] Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds
    Koen van den Dungen
    Adam Rennie
    [J]. Annales Henri Poincaré, 2016, 17 : 3255 - 3286
  • [40] Pseudo-Riemannian Jacobi-Videv manifolds
    Gilkey, P.
    Nikcevic, S.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (05) : 727 - 738