Lifelong Learning with Dynamic Convolutions for Glioma Segmentation from Multi-Modal MRI

被引:0
|
作者
Banerjee, Subhashis [1 ]
Strand, Robin [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
来源
MEDICAL IMAGING 2023 | 2023年 / 12464卷
关键词
Catastrophic Forgetting; Lifelong Learning; Dynamic Convolution Neural Network; Segmentation;
D O I
10.1117/12.2654200
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel solution for catastrophic forgetting in lifelong learning (LL) using Dynamic Convolution Neural Network (Dy-CNN). The proposed dynamic convolution layer can adapt convolution filters by learning kernel coefficients or weights based on the input image. The suitability of the proposed Dy-CNN in a lifelong sequential learning-based scenario with multi-modal MR images is experimentally demonstrated for the segmentation of Glioma tumors from multi-modal MR images. Experimental results demonstrated the superiority of the Dy-CNN-based segmenting network in terms of learning through multi-modal MRI images and better convergence of lifelong learning-based training.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] CTFusion: Convolutions Integrate with Transformers for Multi-modal Image Fusion
    Shen, Zhengwen
    Wang, Jun
    Pan, Zaiyu
    Wang, Jiangyu
    Li, Yulian
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022, 2022, 13534 : 488 - 498
  • [32] Multi-modal body part segmentation of infants using deep learning
    Florian Voss
    Noah Brechmann
    Simon Lyra
    Jöran Rixen
    Steffen Leonhardt
    Christoph Hoog Antink
    BioMedical Engineering OnLine, 22
  • [33] Unsupervised Multi-modal Learning
    Iqbal, Mohammed Shameer
    ADVANCES IN ARTIFICIAL INTELLIGENCE (AI 2015), 2015, 9091 : 343 - 346
  • [34] Learning Multi-modal Similarity
    McFee, Brian
    Lanckriet, Gert
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 491 - 523
  • [35] Multi-Task and Multi-Modal Learning for RGB Dynamic Gesture Recognition
    Fan, Dinghao
    Lu, Hengjie
    Xu, Shugong
    Cao, Shan
    IEEE SENSORS JOURNAL, 2021, 21 (23) : 27026 - 27036
  • [36] Modality Completion via Gaussian Process Prior Variational Autoencoders for Multi-modal Glioma Segmentation
    Hamghalam, Mohammad
    Frangi, Alejandro F.
    Lei, Baiying
    Simpson, Amber L.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VII, 2021, 12907 : 442 - 452
  • [37] RANDOM DECISION FORESTS FOR AUTOMATIC BRAIN TUMOR SEGMENTATION ON MULTI-MODAL MRI IMAGES
    Pinto, Adriano
    Pereira, Sergio
    Dinis, Hugo
    Silva, Carlos A.
    Rasteiro, Deolinda M. L. D.
    2015 IEEE 4TH PORTUGUESE MEETING ON BIOENGINEERING (ENBENG), 2015,
  • [38] A Multi-Modal System for Road Detection and Segmentation
    Hu, Xiao
    Rodriguez F, Sergio A.
    Gepperth, Alexander
    2014 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2014, : 1365 - 1370
  • [39] MidFusNet: Mid-dense Fusion Network for Multi-modal Brain MRI Segmentation
    Duan, Wenting
    Zhang, Lei
    Colman, Jordan
    Gulli, Giosue
    Ye, Xujiong
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 102 - 114
  • [40] PIMMS: Permutation Invariant Multi-modal Segmentation
    Varsavsky, Thomas
    Eaton-Rosen, Zach
    Sudre, Carole H.
    Nachev, Parashkev
    Cardoso, M. Jorge
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018, 2018, 11045 : 201 - 209