Rank of a tensor and quantum entanglement

被引:8
|
作者
Bruzda, Wojciech [1 ]
Friedland, Shmuel [2 ,5 ]
Zyczkowski, Karol [1 ,3 ,4 ]
机构
[1] Jagiellonian Univ, Inst Theoret Phys, Krakow, Poland
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL USA
[3] Jagiellonian Univ, Inst Theoret Phys, Krakow, Poland
[4] Polish Acad Sci, Ctr Theoret Phys, Warsaw, Poland
[5] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 11期
关键词
Multipartite quantum systems; nuclear and spectral norms; nuclear rank; quantum entanglement; quantum states; symmetric tensors; tensors; tensor rank; CANONICAL POLYADIC DECOMPOSITION; SECANT VARIETIES; SYMMETRIC RANK; PROBABILITY RELATIONS; UNIQUENESS CONDITIONS; IDENTIFIABILITY; COMPLEXITY; STATES; APPROXIMATION; PROOF;
D O I
10.1080/03081087.2023.2211717
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The rank of a tensor is analysed in the context of quantum entanglement. A pure quantum state v of a composite system consisting of d subsystems with n levels each is viewed as a vector in the d-fold tensor product of n-dimensional Hilbert space and can be identified with a tensor with d indices, each running from 1 to n. We discuss the notions of the generic rank and the maximal rank of a tensor and review results known for the low dimensions. Another variant of this notion, called the border rank of a tensor, is shown to be relevant for the characterization of orbits of quantum states generated by the group of special linear transformations. A quantum state v is called entangled, if it cannot be written in the product form, v ? v(1) ? v(2) ? . . . ? v(d) , what implies correlations between physical subsystems. A relation between various ranks and norms of a tensor and the entanglement of the corresponding quantum state is revealed.
引用
收藏
页码:1796 / 1859
页数:64
相关论文
共 50 条
  • [31] Variational quantum eigensolver with embedded entanglement using a tensor-network ansatz
    Watanabe, Ryo
    Fujii, Keisuke
    Ueda, Hiroshi
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [32] Quantum gravity states, entanglement graphs and second-quantized tensor networks
    Colafranceschi, Eugenia
    Oriti, Daniele
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (07)
  • [33] Bounds on the tensor rank
    Ballico, Edoardo
    Bernardi, Alessandra
    Chiantini, Luca
    Guardo, Elena
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (06) : 1771 - 1785
  • [34] The Complexity of Tensor Rank
    Marcus Schaefer
    Daniel Štefankovič
    Theory of Computing Systems, 2018, 62 : 1161 - 1174
  • [35] On the rank of a Latin tensor
    Shitov, Yaroslav
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 299 - 305
  • [36] The Complexity of Tensor Rank
    Schaefer, Marcus
    Stefankovic, Daniel
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (05) : 1161 - 1174
  • [37] Bounds on the tensor rank
    Edoardo Ballico
    Alessandra Bernardi
    Luca Chiantini
    Elena Guardo
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1771 - 1785
  • [38] Iterative tensor eigen rank minimization for low-rank tensor completion
    Su, Liyu
    Liu, Jing
    Tian, Xiaoqing
    Huang, Kaiyu
    Tan, Shuncheng
    INFORMATION SCIENCES, 2022, 616 : 303 - 329
  • [39] Tensor Q-rank: new data dependent definition of tensor rank
    Kong, Hao
    Lu, Canyi
    Lin, Zhouchen
    MACHINE LEARNING, 2021, 110 (07) : 1867 - 1900
  • [40] Comparison of low-rank tensor expansions for the acceleration of quantum chemistry computations
    Hoy, Erik P.
    Shenvi, Neil
    Mazziotti, David A.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (03):