Rethinking Pseudo-Labeling for Semi-Supervised Facial Expression Recognition With Contrastive Self-Supervised Learning

被引:10
|
作者
Fang, Bei [1 ,2 ]
Li, Xian [1 ]
Han, Guangxin [1 ]
He, Juhou [1 ]
机构
[1] Shaanxi Normal Univ, Key Lab Modern Teaching Technol, Minist Educ, Xian 710062, Shaanxi, Peoples R China
[2] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Shaanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Face recognition; Databases; Deep learning; Convolutional neural networks; Clustering algorithms; Semi-supervised learning; Computer vision; Self-supervised learning; Facial expression recognition; semi-supervised learning; contrastive self-supervised learning; out-of-distribution data;
D O I
10.1109/ACCESS.2023.3274193
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Self-supervised learning for semi-supervised facial expression recognition aims to avoid the need to collect expensive labeled facial expression data. Existing methods demonstrate an impressive performance boost, but they artificially assume that small labeled facial expression data and large unlabeled facial expression data are from the same class distribution. In a more realistic scenario, when utilizing facial expression data from a large face recognition database as unlabeled data, there will be a mismatch distribution between the two sets of data. This often results in severe performance degradation due to incorrect propagation of unlabeled data from unrelated sources. In this paper, we address the class distribution mismatch problem in deep semi-supervised learning-based facial expression recognition. Specifically, we propose a silhouette coefficient-based contrast clustering algorithm, which determines the degree of separation between clusters by examining the intra-cluster and inter-cluster distances to accurately detect out-of-distribution data. In addition, we propose a pseudo-labeling rethinking strategy that matches the soft pseudo-labels estimated from a fine-tuned network to the contrast clustering to produce reliable pseudo-labels. Experiments on three in-the-wild datasets, RAF-DB, FERPlus and AffectNet, demonstrate the effectiveness of our method, and our approach performs well compared to state-of-the-art methods.
引用
收藏
页码:45547 / 45558
页数:12
相关论文
共 50 条
  • [41] P-PseudoLabel: Enhanced Pseudo-Labeling Framework With Network Pruning in Semi-Supervised Learning
    Ham, Gyeongdo
    Cho, Yucheol
    Lee, Jae-Hyeok
    Kim, Daeshik
    IEEE Access, 2022, 10 : 115652 - 115662
  • [42] Semi-rPPG: Semi-Supervised Remote Physiological Measurement With Curriculum Pseudo-Labeling
    Wu, Bingjie
    Yu, Zitong
    Xie, Yiping
    Liu, Wei
    Luo, Chaoqi
    Liu, Yong
    Goh, Rick Siow Mong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [43] Class-Distribution-Aware Pseudo-Labeling for Semi-Supervised Multi-Label Learning
    Xie, Ming-Kun
    Xiao, Jia-Hao
    Liu, Hao-Zhe
    Niu, Gang
    Sugiyama, Masashi
    Huang, Sheng-Jun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [44] Integrating pseudo labeling with contrastive clustering for transformer-based semi-supervised action recognition
    Li, Nannan
    Huang, Kan
    Wu, Qingtian
    Zhao, Yang
    APPLIED INTELLIGENCE, 2024, 54 (22) : 11177 - 11195
  • [45] SRODET: Semi-Supervised Remote Sensing Object Detection With Dynamic Pseudo-Labeling
    Wang, Wenyong
    Cai, Yuanzheng
    Wang, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [46] S5CL: Unifying Fully-Supervised, Self-supervised, and Semi-supervised Learning Through Hierarchical Contrastive Learning
    Tran, Manuel
    Wagner, Sophia J.
    Boxberg, Melanie
    Peng, Tingying
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 99 - 108
  • [47] Toward Effective Semi-supervised Node Classification with Hybrid Curriculum Pseudo-labeling
    Luo, Xiao
    Ju, Wei
    Gu, Yiyang
    Qin, Yifang
    Yi, Siyu
    Wu, Daqing
    Liu, Luchen
    Zhang, Ming
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (03)
  • [48] CENTER BASED PSEUDO-LABELING FOR SEMI-SUPERVISED PERSON RE-IDENTIFICATION
    Ding, Guodong
    Zhang, Shanshan
    Khan, Salman
    Tang, Zhenmin
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [49] Semi-Supervised Training with Pseudo-Labeling for End-to-End Neural Diarization
    Takashima, Yuki
    Fujita, Yusuke
    Horiguchi, Shota
    Watanabe, Shinji
    Garcia, Paola
    Nagamatsu, Kenji
    INTERSPEECH 2021, 2021, : 3096 - 3100
  • [50] Semi-Supervised Facial Expression Recognition by Exploring False Pseudo-Labels
    Sun, Hao
    Pi, Chenchen
    Xie, Wei
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 234 - 239