On doubly symmetric periodic orbits

被引:4
|
作者
Frauenfelder, Urs [1 ]
Moreno, Agustin [2 ,3 ]
机构
[1] Augsburg Univ, Augsburg, Germany
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Heidelberg Univ, Heidelberg, Germany
来源
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY | 2023年 / 135卷 / 02期
基金
美国国家科学基金会;
关键词
Hamiltonian dynamics; Symplectic geometry; Periodic orbits; Celestial mechanics; Symmetries;
D O I
10.1007/s10569-023-10135-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this article, for Hamiltonian systems with two degrees of freedom, we study doubly symmetric periodic orbits, i.e., those which are symmetric with respect to two (distinct) commuting antisymplectic involutions. These are ubiquitous in several problems of interest in mechanics. We show that, in dimension four, doubly symmetric periodic orbits cannot be negative hyperbolic. This has a number of consequences: (1) All covers of doubly symmetric orbits are good, in the sense of Symplectic Field Theory (Eliashberg et al. Geom Funct Anal Special Volume Part II:560-673, 2000); (2) a non-degenerate doubly symmetric orbit is stable if and only if its CZ-index is odd; (3) a doubly symmetric orbit does not undergo period doubling bifurcation; and (4) there is always a stable orbit in any collection of doubly symmetric periodic orbits with negative SFT-Euler characteristic (as coined in Frauenfelder et al. in Symplectic methods in the numerical search of orbits in real-life planetary systems. Preprint arXiv:2206.00627). The above results follow from: (5) A symmetric orbit is negative hyperbolic if and only its two B -signs (introduced in Frauenfelder and Moreno 2021) differ.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] The Hörmander index of symmetric periodic orbits
    Urs Frauenfelder
    Otto van Koert
    Geometriae Dedicata, 2014, 168 : 197 - 205
  • [22] Continuation of normal doubly symmetric orbits in conservative reversible systems
    Francisco Javier Muñoz-Almaraz
    Emilio Freire
    Jorge Galan-Vioque
    Andre Vanderbauwhede
    Celestial Mechanics and Dynamical Astronomy, 2007, 97 : 17 - 47
  • [23] Continuation of normal doubly symmetric orbits in conservative reversible systems
    Javier Munoz-Almaraz, Francisco
    Freire, Emilio
    Galan-Vioque, Jorge
    Vanderbauwhede, Andre
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2007, 97 (01): : 17 - 47
  • [24] Symmetric and non-symmetric periodic orbits for the digital filter map
    Vowden, C. J.
    Vowden, B. J.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2008, 23 (04): : 437 - 466
  • [25] CONNECTING SYMMETRIC AND ASYMMETRIC FAMILIES OF PERIODIC ORBITS IN SQUARED SYMMETRIC HAMILTONIANS
    Blesa, Fernando
    Piasecki, Slawomir
    Dena, Angeles
    Barrio, Roberto
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (02):
  • [26] Homoclinic orbits of the doubly periodic Davey-Stewartson equation
    Zhang, J
    Guo, BL
    Shen, SF
    PROGRESS IN NATURAL SCIENCE, 2004, 14 (11) : 1031 - 1032
  • [27] Homoclinic orbits of the doubly periodic Davey-Stewartson equation
    ZHANG Jun 1*
    2. Department of Mathematics
    ProgressinNaturalScience, 2004, (11) : 95 - 96
  • [28] Symmetric Homoclinic Orbits at the Periodic Hamiltonian Hopf Bifurcation
    Lerman, Lev
    Markova, Anna
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (08):
  • [29] Periodic orbits around a spherically symmetric naked singularity
    Babar, Gulmina Zaman
    Babar, Adil Zaman
    Lim, Yen-Kheng
    PHYSICAL REVIEW D, 2017, 96 (08)
  • [30] Continuation of periodic orbits in symmetric Hamiltonian and conservative systems
    J. Galan-Vioque
    F. J. M. Almaraz
    E. F. Macías
    The European Physical Journal Special Topics, 2014, 223 : 2705 - 2722