Inorganic Subnanometer Nanowire-Based Organogels: Trends, Challenges, and

被引:12
|
作者
Zhang, Simin [1 ]
Wang, Xun [2 ]
机构
[1] Beijing Inst Technol, Sch Chem & Chem Engn, MOE Key Lab Cluster Sci, Beijing Key Lab Construct Tailorable Adv Funct Mat, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Dept Chem, Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
organogel; subnanometer nanowire; gelator; challenge; opportunity; DRUG-DELIVERY; NM;
D O I
10.1021/acsnano.2c10056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organogels exhibit many excellent properties and multiple functions. Conventionally, polymers and low-molecular-mass organic gelators (LMOGs) are used for preparing organo-gels, showing potential applications. Recently, a subnanometer nanowire (SNW) gelator applicable for various organic liquids emerged, which has potential for semi-solidification, safe storage, and transportation of organic liquids and oil spill recovery. This perspective summarizes and compares these three kinds of organogels. Through this perspective, the challenges and opportunities for SNW-based organogels are made clearer. Regulating functions of gels by controlling the structure and composition of SNWs and developing other subnanometer material gelators may be further research directions.
引用
收藏
页码:20 / 26
页数:7
相关论文
共 50 条
  • [21] Semiconducting Nanowire-Based Optoelectronic Fibers
    Yan, Wei
    Qu, Yunpeng
    Das Gupta, Tapajyoti
    Darga, Arouna
    Dang Tung Nguyen
    Page, Alexis Gerald
    Rossi, Mariana
    Ceriotti, Michele
    Sorin, Fabien
    ADVANCED MATERIALS, 2017, 29 (27)
  • [22] Nanowire-based devices for THz polarimetry
    Johnston, Michael B.
    2020 45TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2020,
  • [23] On the Gold Nanowire-Based Hyperbolic Metamaterials
    Baqir, M. A.
    Choudhury, P. K.
    Fatima, T.
    Ibrahim, A. -B. M. A.
    2018 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2018, : 166 - 169
  • [24] Silicon nanowire-based solar cells
    Stelzner, Th
    Pietsch, M.
    Andrae, G.
    Falk, F.
    Ose, E.
    Christiansen, S.
    NANOTECHNOLOGY, 2008, 19 (29)
  • [25] CuO Nanowire-Based Humidity Sensor
    Wang, Sheng-Bo
    Hsiao, Chih-Hung
    Chang, Shoou-Jinn
    Lam, Kin-Tak
    Wen, Kuo-Hsun
    Young, Sheng-Joue
    Hung, Shang-Chao
    Huang, Bohr-Ran
    IEEE SENSORS JOURNAL, 2012, 12 (06) : 1884 - 1888
  • [26] Nanowire-based tunable photonic crystals
    Rehammar, R.
    Kinaret, J. M.
    OPTICS EXPRESS, 2008, 16 (26): : 21682 - 21691
  • [27] Carbon nanowire-based temperature sensor
    Zaitsev, Alexander M.
    Levine, Alfred M.
    Zaidi, Sohail H.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (10): : 3574 - 3579
  • [28] Nanowire-based electromechanical biomimetic sensor
    Tonisch, K.
    Cimalla, V.
    Will, F.
    Weise, F.
    Stubenrauch, M.
    Albrecht, A.
    Hoffmann, M.
    Ambacher, O.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 37 (1-2): : 208 - 211
  • [29] Ultrafast optoelectronics in nanowire-based circuits
    Holleitner, Alexander W.
    2016 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2016, : 41 - 41
  • [30] A ZnO nanowire-based humidity sensor
    Chang, Sheng-Po
    Chang, Shoou-Jinn
    Lu, Chien-Yuan
    Li, Meng-Ju
    Hsu, Cheng-Liang
    Chiou, Yu-Zung
    Hsueh, Ting-Jen
    Chen, I-Cherng
    SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (06) : 772 - 778