Inorganic Subnanometer Nanowire-Based Organogels: Trends, Challenges, and

被引:12
|
作者
Zhang, Simin [1 ]
Wang, Xun [2 ]
机构
[1] Beijing Inst Technol, Sch Chem & Chem Engn, MOE Key Lab Cluster Sci, Beijing Key Lab Construct Tailorable Adv Funct Mat, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Dept Chem, Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
organogel; subnanometer nanowire; gelator; challenge; opportunity; DRUG-DELIVERY; NM;
D O I
10.1021/acsnano.2c10056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organogels exhibit many excellent properties and multiple functions. Conventionally, polymers and low-molecular-mass organic gelators (LMOGs) are used for preparing organo-gels, showing potential applications. Recently, a subnanometer nanowire (SNW) gelator applicable for various organic liquids emerged, which has potential for semi-solidification, safe storage, and transportation of organic liquids and oil spill recovery. This perspective summarizes and compares these three kinds of organogels. Through this perspective, the challenges and opportunities for SNW-based organogels are made clearer. Regulating functions of gels by controlling the structure and composition of SNWs and developing other subnanometer material gelators may be further research directions.
引用
收藏
页码:20 / 26
页数:7
相关论文
共 50 条
  • [1] Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels
    Zhang, Simin
    Shi, Wenxiong
    Wang, Xun
    SCIENCE, 2022, 377 (6601) : 100 - +
  • [2] Versatile Inorganic Subnanometer Nanowire Adhesive
    Zhang, Simin
    Shi, Wenxiong
    Yu, Biao
    Wang, Xun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (36) : 16389 - 16394
  • [3] Opportunities and Challenges of Nanowire-Based CMOS Technologies
    Barraud, S.
    Casse, M.
    Gaben, L.
    Nguyen, P.
    Hartmann, J. M.
    Samson, M. P.
    Maffini-Alvaro, V.
    Tabone, C.
    Vizioz, C.
    Arvet, C.
    Pimenta-Barros, P.
    Glowacki, F.
    Bernier, N.
    Rozeau, O.
    Jaud, M. A.
    Martinie, S.
    Laccord, J.
    Allain, F.
    De Salvo, B.
    Vinet, M.
    2015 IEEE SOI-3D-SUBTHRESHOLD MICROELECTRONICS TECHNOLOGY UNIFIED CONFERENCE (S3S), 2015,
  • [4] Nanowire-Based Sensors
    Ramgir, Niranjan S.
    Yang, Yang
    Zacharias, Margit
    SMALL, 2010, 6 (16) : 1705 - 1722
  • [5] Nanowire-based thermoelectrics
    Ali, Azhar
    Chen, Yixi
    Vasiraju, Venkata
    Vaddiraju, Sreeram
    NANOTECHNOLOGY, 2017, 28 (28)
  • [6] Nanowire-based biosensors
    Patolsky, Fernando
    Zheng, Gengfeng
    Lieber, Charles M.
    ANALYTICAL CHEMISTRY, 2006, 78 (13) : 4260 - 4269
  • [7] Massive integration of inorganic nanowire-based structures on solid substrates for device applications
    Heo, Kwang
    Kim, Cheol-Joo
    Jo, Moon-Ho
    Hong, Seunghun
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (07) : 901 - 908
  • [8] Nanowire-based hydrogen sensor
    Dagani, R
    CHEMICAL & ENGINEERING NEWS, 2001, 79 (39) : 14 - 14
  • [9] Nanowire-based electrochemical biosensors
    Wanekaya, AK
    Chen, W
    Myung, NV
    Mulchandani, A
    ELECTROANALYSIS, 2006, 18 (06) : 533 - 550
  • [10] Nanowire-based THz polarimetry
    Johnston, Michael B.
    2023 48TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ, 2023,