A Self-Sensing and Self-Powered Wearable System Based on Multi-Source Human Motion Energy Harvesting

被引:19
|
作者
Hao, Daning [1 ,2 ]
Gong, Yuchen [2 ,3 ]
Wu, Jiaoyi [2 ,4 ]
Shen, Qianhui [5 ]
Zhang, Zutao [6 ]
Zhi, Jinyi [5 ]
Zou, Rui [5 ]
Kong, Weihua [1 ,2 ]
Kong, Lingji [1 ,2 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, Yibin Res Inst, Yibin 644000, Peoples R China
[3] Southwest Jiaotong Univ, Tangshan Inst, Tangshan 063008, Peoples R China
[4] Southwest Jiaotong Univ, Sch Informat Sci & Tech, Chengdu 610031, Peoples R China
[5] Southwest Jiaotong Univ, Sch Design, Chengdu 610031, Peoples R China
[6] Chengdu Technol Univ, Chengdu 611730, Peoples R China
关键词
energy harvesting; frequency up-conversion; self-powered; self-sensing; wearable device; GENERATING ELECTRICITY; WALKING; NANOGENERATOR;
D O I
10.1002/smll.202311036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wearable devices play an indispensable role in modern life, and the human body contains multiple wasted energies available for wearable devices. This study proposes a self-sensing and self-powered wearable system (SS-WS) based on scavenging waist motion energy and knee negative energy. The proposed SS-WS consists of a three-degree-of-freedom triboelectric nanogenerator (TDF-TENG) and a negative energy harvester (NEH). The TDF-TENG is driven by waist motion energy and the generated triboelectric signals are processed by deep learning for recognizing the human motion. The triboelectric signals generated by TDF-TENG can accurately recognize the motion state after processing based on Gate Recurrent Unit deep learning model. With double frequency up-conversion, the NEH recovers knee negative energy generation for powering wearable devices. A model wearing the single energy harvester can generate the power of 27.01 mW when the movement speed is 8 km h-1, and the power density of NEH reaches 0.3 W kg-1 at an external excitation condition of 3 Hz. Experiments and analysis prove that the proposed SS-WS can realize self-sensing and effectively power wearable devices. This study proposes a self-sensing and self-powered wearable system (SS-WS), consisting of a three-degree-of-freedom triboelectric nanogenerator (TDF-TENG) and a negative energy harvester (NEH). The TDF-TENG is driven by waist motion energy and the generated triboelectric signals processed by deep learning for recognizing the human motion. The NEH recovers knee negative energy for powering wearable devices. image
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Micro Energy Harvesting Technologies for Self-powered Sensing of Electrical Equipment
    He, Hailong
    Li, Yi
    Chen, She
    Yang, Aijun
    Xiao, Song
    Rong, Mingzhe
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (08): : 3387 - 3402
  • [42] A Stretchable Multimode Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Hu, Shiyu
    Chang, Shoude
    Xiao, Gaozhi
    Lu, Jianping
    Gao, Jun
    Zhang, Yanguang
    Tao, Ye
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (03)
  • [43] Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
    Li, Xunjia
    Jiang, Chengmei
    Zhao, Fengnian
    Lan, Lingyi
    Yao, Yao
    Yu, Yonghua
    Ping, Jianfeng
    Ying, Yibin
    NANO ENERGY, 2019, 61 : 78 - 85
  • [44] Self-powered sensing of power transmission lines galloping based on piezoelectric energy harvesting
    Gao, Sihang
    Zeng, Xisong
    Tao, Bo
    Ke, Tingjing
    Feng, Shaoxuan
    Chen, Yiduo
    Zhou, Jie
    Lan, Wenyu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 144
  • [45] Self-Powered Smart Vibration Absorber for In Situ Sensing and Energy Harvesting
    Xu, Jiawen
    Wang, Zhenyu
    Nie, Heng-Yong
    Wei, Yen
    Liu, Yu
    ADVANCED INTELLIGENT SYSTEMS, 2024, 6 (07)
  • [46] Acoustic and mechanical metamaterials for energy harvesting and self-powered sensing applications
    Lee, Geon
    Lee, Seong-Jin
    Rho, Junsuk
    Kim, Miso
    MATERIALS TODAY ENERGY, 2023, 37
  • [47] Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator
    Chen, Jun
    Wang, Zhong Lin
    JOULE, 2017, 1 (03) : 480 - 521
  • [48] Biomass-based wearable and Self-powered pressure sensor for human motion detection
    Huang, Jieyu
    Hao, Yi
    Zhao, Min
    Qiao, Hui
    Huang, Fenglin
    Li, Dawei
    Wei, Qufu
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 146
  • [49] Silk protein-based triboelectric nanogenerators for energy harvesting and self-powered sensing
    Shang, Bo
    Wang, Chen-Yu
    Wang, Xiao-Xue
    Yu, Shou-Shan
    Wu, Zhi-Feng
    Qiao, Sheng-Lin
    Chen, Ke-Zheng
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 387
  • [50] Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators
    Yao, Mingliang
    Xie, Guangzhong
    Gong, Qichen
    Su, Yuanjie
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2020, 11 : 1590 - 1595