Low-carbon Economic Operation Optimization of Integrated Energy System Considering Carbon Emission Sensing Measurement System and Demand Response: An Improved Northern Goshawk Optimization Algorithm

被引:0
|
作者
Li, Ling -ling [1 ,2 ]
Miao, Yan [1 ,2 ]
Lin, Cheng-Jian [3 ]
Qu, Linan [1 ,2 ]
Liu, Guanchen [4 ]
Yuan, Jianping [5 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equipm, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Key Lab Electromagnet Field & Elect Apparat Reliab, Tianjin 300401, Peoples R China
[3] Natl Chin Yi Univ Technol, Dept Comp Sci & Informat Engn, Taichung 411, Taiwan
[4] Power China Huadong Engn Corp Ltd, Hangzhou 310000, Peoples R China
[5] Hangzhou Huachen Elect Power Control Co Ltd, Hangzhou 310014, Peoples R China
关键词
integrated electricity-heat energy system; improved northern goshawk algorithm; carbon emission sensing measurement system; demand response; STRATEGY;
D O I
10.18494/SAM4679
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The integrated energy system is a perfect way to realize the transformation of the traditional energy industry structure. To further explore the role of its load-side adjustable potential in carbon emission reduction, an optimal operation model of the integrated energy system considering the carbon emission sensing measurement system and demand response (DR) is proposed. First, the integrated electricity-heat energy system (IEHS) model framework is constructed in accordance with the coupling characteristics of electricity-heat-gas in the system. The carbon emission sensing measurement system is introduced on the energy supply side, and DR is considered on the user load side, including the DR model based on the price elasticity matrix and the replacement-based DR model considering the mutual conversion of electric and thermal energies on the energy use side. Second, the baseline method is used to allocate carbon emission quotas for the system free of charge, and the actual carbon emissions of gas turbines and gas boilers are considered. An IEHS objective function is established to minimize the sum of the energy purchase, carbon transaction, and operation and maintenance costs. Third, an improved northern goshawk optimization (INGO) algorithm is proposed to optimize the low-carbon operation of the IEHS model. Finally, the effectiveness and practicability of the proposed model and algorithm are verified using different scenarios and different algorithms. The results show that, considering the carbon emission sensing measurement system and DR, the total operation cost is reduced by 10.4% and the actual carbon emission is reduced by 6420.582 kg. Compared with those of the northern goshawk (NGO) algorithm, the total operation cost of the INGO algorithm is reduced by 9.4% and the actual carbon emission is reduced by 1164.253 kg, which realizes the coordinated operation of system economy and low carbon emission.
引用
收藏
页码:4417 / 4437
页数:21
相关论文
共 50 条
  • [31] Low-carbon Operation Method of Integrated Energy System in Ecological Park Considering Carbon Footprint
    Sun, Pei
    Zheng, Zhen
    Yang, Xingang
    Du, Yang
    Wang, Weitao
    Wang, Lingling
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 749 - 755
  • [32] Low-carbon optimal operation of the integrated energy system considering integrated demand response and oxygen-rich combustion capture technology
    Ji, Xiu
    Li, Meng
    Li, Meiyue
    Han, Huanhuan
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [33] Low-carbon Economic Dispatch of Regional Integrated Energy System Based on Demand Side Response
    He X.
    Liu M.
    Li J.
    Li G.
    Zhang J.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (03): : 1140 - 1150
  • [34] Integrated energy system for low-carbon economic operation optimization: Pareto compromise programming and master-slave game
    Li, Ling -Ling
    Miao, Yan
    Lim, Ming K.
    Sethanan, Kanchana
    Tseng, Ming-Lang
    RENEWABLE ENERGY, 2024, 222
  • [35] Operation Optimization of Regional Integrated Energy System Considering the Responsibility of Renewable Energy Consumption and Carbon Emission Trading
    Li, Feng
    Lu, Shirong
    Cao, Chunwei
    Feng, Jiang
    ELECTRONICS, 2021, 10 (21)
  • [36] Low-carbon economic dispatch of integrated energy system considering the uncertainty of energy efficiency
    Xu, Yurui
    Song, Yi
    Deng, Youjun
    Liu, Zhibin
    Guo, Xiangwei
    Zhao, Dong
    ENERGY REPORTS, 2023, 9 : 1003 - 1010
  • [37] Low-carbon economic dispatch of integrated energy system considering the uncertainty of energy efficiency
    Xu, Yurui
    Song, Yi
    Deng, Youjun
    Liu, Zhibin
    Guo, Xiangwei
    Zhao, Dong
    ENERGY REPORTS, 2023, 9 : 1003 - 1010
  • [38] "Source-load" Low-carbon Economic Dispatch of Integrated Energy System Considering Carbon Capture System
    Tian F.
    Jia Y.
    Ren H.
    Bai Y.
    Huang T.
    Dianwang Jishu/Power System Technology, 2020, 44 (09): : 3346 - 3354
  • [39] Low-Carbon Economic Scheduling of Integrated Energy System Considering Flexible Supply-Demand Response and Diversified Utilization of Hydrogen
    Ma, Chengcheng
    Hu, Zhijian
    SUSTAINABILITY, 2025, 17 (04)
  • [40] Low-carbon economic distributed dispatch for district-level integrated energy system considering privacy protection and demand response
    Yang, Ting
    Wang, Qiancheng
    Wang, Xudong
    Wang, Lin
    Geng, Yinan
    APPLIED ENERGY, 2025, 383