Low-carbon Economic Operation Optimization of Integrated Energy System Considering Carbon Emission Sensing Measurement System and Demand Response: An Improved Northern Goshawk Optimization Algorithm

被引:0
|
作者
Li, Ling -ling [1 ,2 ]
Miao, Yan [1 ,2 ]
Lin, Cheng-Jian [3 ]
Qu, Linan [1 ,2 ]
Liu, Guanchen [4 ]
Yuan, Jianping [5 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equipm, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Key Lab Electromagnet Field & Elect Apparat Reliab, Tianjin 300401, Peoples R China
[3] Natl Chin Yi Univ Technol, Dept Comp Sci & Informat Engn, Taichung 411, Taiwan
[4] Power China Huadong Engn Corp Ltd, Hangzhou 310000, Peoples R China
[5] Hangzhou Huachen Elect Power Control Co Ltd, Hangzhou 310014, Peoples R China
关键词
integrated electricity-heat energy system; improved northern goshawk algorithm; carbon emission sensing measurement system; demand response; STRATEGY;
D O I
10.18494/SAM4679
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The integrated energy system is a perfect way to realize the transformation of the traditional energy industry structure. To further explore the role of its load-side adjustable potential in carbon emission reduction, an optimal operation model of the integrated energy system considering the carbon emission sensing measurement system and demand response (DR) is proposed. First, the integrated electricity-heat energy system (IEHS) model framework is constructed in accordance with the coupling characteristics of electricity-heat-gas in the system. The carbon emission sensing measurement system is introduced on the energy supply side, and DR is considered on the user load side, including the DR model based on the price elasticity matrix and the replacement-based DR model considering the mutual conversion of electric and thermal energies on the energy use side. Second, the baseline method is used to allocate carbon emission quotas for the system free of charge, and the actual carbon emissions of gas turbines and gas boilers are considered. An IEHS objective function is established to minimize the sum of the energy purchase, carbon transaction, and operation and maintenance costs. Third, an improved northern goshawk optimization (INGO) algorithm is proposed to optimize the low-carbon operation of the IEHS model. Finally, the effectiveness and practicability of the proposed model and algorithm are verified using different scenarios and different algorithms. The results show that, considering the carbon emission sensing measurement system and DR, the total operation cost is reduced by 10.4% and the actual carbon emission is reduced by 6420.582 kg. Compared with those of the northern goshawk (NGO) algorithm, the total operation cost of the INGO algorithm is reduced by 9.4% and the actual carbon emission is reduced by 1164.253 kg, which realizes the coordinated operation of system economy and low carbon emission.
引用
收藏
页码:4417 / 4437
页数:21
相关论文
共 50 条
  • [1] Low-carbon optimization operation of integrated energy system considering comprehensive demand response under improved carbon trading mechanism
    Li, Jing
    Gao, Xiying
    Guo, Dan
    Xia, Jingyi
    Jia, Zhuting
    Wang, Yue
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [2] Low-carbon optimal operation of the integrated energy system considering integrated demand response
    Ji, Xiu
    Li, Meng
    Li, Meiyue
    Han, Huanhuan
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [3] Source-Load Integrated Optimization for Distributed Energy System Considering Low-Carbon Demand Response
    Wang, Guofeng
    Liu, Yuchen
    Zheng, Sheng
    Wu, Xuguang
    Liu, Yongqi
    Feng, Changsen
    Zhang, Youbing
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 1993 - 1998
  • [4] Low-carbon economic operation for integrated energy system considering carbon trading mechanism
    Sun, Peiran
    Hao, Xuejun
    Wang, Jun
    Shen, Di
    Tian, Lu
    ENERGY SCIENCE & ENGINEERING, 2021, 9 (11) : 2064 - 2078
  • [5] Low-carbon planning and optimization of the integrated energy system considering lifetime carbon emissions
    Zhao, Naixin
    Gu, Wenbo
    JOURNAL OF BUILDING ENGINEERING, 2024, 82
  • [6] Low-Carbon Economic Dispatch of Integrated Energy System Considering Expanding Carbon Emission Flows
    Wang, Lixia
    Zhao, Haodong
    Wang, Dawei
    Dong, Fang
    Feng, Tianmin
    Xiong, Rui
    IEEE ACCESS, 2024, 12 : 104755 - 104769
  • [7] Low-carbon Optimal Dispatching of Integrated Energy System Considering Low-carbon Demand Response and Stackelberg Game
    Ye Y.
    Xing H.
    Mi Y.
    Yan Z.
    Dong J.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (09): : 34 - 43
  • [8] Low-carbon economic dispatching of integrated energy system considering liquid air energy storage and integrated demand response
    Zhu Z.
    Sheng M.
    Chen Z.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2022, 42 (12): : 1 - 13
  • [9] Coordinated optimization scheduling operation of integrated energy system considering demand response and carbon trading mechanism
    Yang, Peihong
    Jiang, Hui
    Liu, Chunming
    Kang, Lan
    Wang, Chunling
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 147
  • [10] Multi-energy collaborative optimization of park integrated energy system considering carbon emission and demand response
    Guo, Weishang
    Wang, Qiang
    Liu, Haiying
    Desire, Wade Atchike
    ENERGY REPORTS, 2023, 9 : 3683 - 3694