Power Minimization in Federated Learning with Over-the-air Aggregation and Receiver Beamforming

被引:0
|
作者
Kalarde, Faeze Moradi [1 ]
Liang, Ben [1 ]
Dong, Min [2 ]
Ahmed, Yahia A. Eldemerdash [3 ]
Cheng, Ho Ting [3 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Ontario Tech Univ, Oshawa, ON, Canada
[3] Ericsson Canada, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Federated Learning; Over-the-air Computation; Power Consumption; Multi-antenna Beamforming;
D O I
10.1145/3616388.3617534
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Combining over-the-air uplink transmission and multi-antenna beamforming can improve the efficiency of federated learning (FL). However, to mitigate the significant aggregation error due to communication noise and signal distortion, pre-processing of device signals and post-processing at the server are required. In this paper, we study the optimization of receiver beamforming and device transmit weights in over-the-air FL, to minimize the total transmit power in each communication round while guaranteeing the convergence of FL. We establish sufficient convergence conditions based on the analysis of gradient descent with error and formulate a power minimization problem. An alternating optimization approach is then employed to decompose the problem into tractable subproblems, and efficient solutions are developed for these subproblems. Our proposed method is evaluated through simulation on standard image classification tasks, demonstrating its effectiveness in achieving substantial reductions in transmit power compared with existing alternatives.
引用
收藏
页码:259 / 267
页数:9
相关论文
共 50 条
  • [41] Power Minimization for Massive MIMO Over-the-Air Computation With Two-Timescale Hybrid Beamforming
    Zhai, Xiongfei
    Chen, Xihan
    Cai, Yunlong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (04) : 873 - 877
  • [42] Over-the-Air Federated Learning Exploiting Channel Perturbation
    Hamidi, Shayan Mohajer
    Mehrabi, Mohammad
    Khandani, Amir K.
    Gunduz, Deniz
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [43] Asynchronous Federated Learning via Over-the-air Computation
    Zheng, Zijian
    Deng, Yansha
    Liu, Xiaonan
    Nallanathan, Arumugam
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1345 - 1350
  • [44] Federated Edge Learning With Misaligned Over-the-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 3951 - 3964
  • [45] Over-the-Air Federated Learning from Heterogeneous Data
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina
    IEEE Transactions on Signal Processing, 2021, 69 : 3796 - 3811
  • [46] Over-the-Air Federated Learning From Heterogeneous Data
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3796 - 3811
  • [47] Over-the-Air Federated Edge Learning With Hierarchical Clustering
    Aygün, Ozan
    Kazemi, Mohammad
    Gündüz, Deniz
    Duman, Tolga M.
    IEEE Transactions on Wireless Communications, 2024, 23 (12) : 17856 - 17871
  • [48] ROBUST FEDERATED LEARNING VIA OVER-THE-AIR COMPUTATION
    Sifaou, Houssem
    Li, Geoffrey Ye
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [49] Over-the-Air Federated Multi-Task Learning
    Ma, Haoming
    Yuan, Xiaojun
    Fan, Dian
    Ding, Zhi
    Wang, Xin
    Fang, Jun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5184 - 5189
  • [50] Federated Edge Learning with Misaligned Over-The-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 236 - 240