Image Segmentation Based on Fuzzy Low-Rank Structural Clustering

被引:7
|
作者
Song, Sensen [1 ,2 ]
Jia, Zhenhong [1 ,2 ]
Yang, Jie [3 ]
Kasabov, Nikola [4 ,5 ]
机构
[1] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Key Lab Signal Detect & Proc, Urumqi 830046, Xinjiang Uygur, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200400, Peoples R China
[4] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland 1020, New Zealand
[5] Ulster Univ, Data Analyt, Derry, Londonderry BT48 7JL, North Ireland
基金
美国国家科学基金会;
关键词
Clustering algorithms; Image segmentation; Image edge detection; Image reconstruction; Minimization; Noise measurement; Electronic mail; Fuzzy clustering; fuzzy low-rank structure; image segmentation; low-rank representation (LRR); superpixel; LOCAL INFORMATION; ALGORITHM; SPARSE; FCM;
D O I
10.1109/TFUZZ.2022.3220925
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy clustering is an essential algorithm in image segmentation, and most of them are based on fuzzy c-mean algorithms. However, it is sensitive to noise, center point selection, cluster number, and distance metric. To address this problem, we propose a new fuzzy clustering method based on low-rank representation (LRR) for image segmentation, which integrates low-rank structure with fuzzy theory. First, we improve the morphological reconstruction superpixel method based on edge detection by introducing anisotropy to enhance the image edge. Thus, on the one hand, the improved morphological reconstruction superpixel method can improve its noise-resistance performance; on the other hand, the complexity of the subsequent low-rank computation can be reduced by enhancing the superpixels constructed by the edges. Second, inspired by the fact that rank can represent correlation, we propose the concept of fuzzy low-rank structure, which is not dealing with data directly but with the relationship between data. Specifically, we perform rank minimization on the constructed membership matrix to obtain the optimal matrix. To obtain better clustering results, we added the Frobenius norm of the fuzzy matrix as a fuzzy regularization term in the LRR model to achieve global convergence and obtain a membership matrix with a strong element correlation. Finally, we obtain the final clustering results by clustering the processed membership matrix using a subspace clustering with a low-rank structure constraint. Experiments performed on artificial and real-world images show that the proposed method is more effective and efficient than the current state-of-the-art methods.
引用
收藏
页码:2153 / 2166
页数:14
相关论文
共 50 条
  • [21] MsLRR: A Unified Multiscale Low-Rank Representation for Image Segmentation
    Liu, Xiaobai
    Xu, Qian
    Ma, Jiayi
    Jin, Hai
    Zhang, Yanduo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (05) : 2159 - 2167
  • [22] Hyperspectral image denoising with superpixel segmentation and low-rank representation
    Fan, Fan
    Ma, Yong
    Li, Chang
    Mei, Xiaoguang
    Huang, Jun
    Ma, Jiayi
    INFORMATION SCIENCES, 2017, 397 : 48 - 68
  • [23] TriAxial Low-Rank Transformer for Efficient Medical Image Segmentation
    Shang, Jiang
    Fang, Xi
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT II, 2024, 14426 : 91 - 102
  • [24] Motion Segmentation using Collaborative Low-Rank and Sparse Subspace Clustering
    Zhang, Yao
    Li, Min
    2017 13TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2017, : 409 - 414
  • [25] L1/2 Regularization based Low-Rank Image Segmentation Model
    Zhang, XiuJun
    Xu, Chen
    2013 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2013, : 382 - 386
  • [26] Model-Based Tensor Low-Rank Clustering
    Li, Junge
    Mai, Qing
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (01) : 208 - 218
  • [27] Graph regularized independent latent low-rank representation for image clustering
    Li, Bo
    Pan, Lin-Feng
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [28] Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image
    Han, Tianhao
    Niu, Sijie
    Gao, Xizhan
    Yu, Wenyue
    Cui, Na
    Dong, Jiwen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] Unsupervised Transfer Learning via Low-Rank Coding for Image Clustering
    Li, Sheng
    Fu, Yun
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1795 - 1802
  • [30] Unified Low-Rank Subspace Clustering with Dynamic Hypergraph for Hyperspectral Image
    Xu, Jinhuan
    Xiao, Liang
    Yang, Jingxiang
    REMOTE SENSING, 2021, 13 (07)