A Pseudolinear Maximum Correntropy Kalman Filter Framework for Bearings-Only Target Tracking

被引:11
|
作者
Zhong, Shan [1 ]
Peng, Bei [1 ]
Ouyang, Lingqiang [2 ]
Yang, Xinyue [2 ]
Zhang, Hongyu [2 ]
Wang, Gang [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Bearings-only measurements; maneuvering target tracking; maximum correntropy; pseudolinear estimation; RADAR; LOCALIZATION; PERFORMANCE; ALGORITHM; MOTION;
D O I
10.1109/JSEN.2023.3283863
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a framework for a pseudolinear Kalman filter (PLKF) based on the maximum correntropy criterion for the bearings-only target tracking problem in non-Gaussian environments. We first derive a pseudolinear maximum correntropy Kalman filter (PMCKF). To solve the offset problem, bias compensation is merged into PMCKF to realize bias-compensated PMCKF (BC-PMCKF). In the real scenario, the speed variation of the target is continuous during motion. Based on this premise, we implement the speed-constrained PMCKF (SC-PMCKF) algorithm in this framework, which suppresses the effect of impulsive noise on velocity estimation well. Finally, a posterior Cramer-Rao lower bound (PCRLB) under non-Gaussian noises is derived for the framework. Simulations and physical experiments show that the proposed estimation method is better than the traditional Kalman filter in non-Gaussian noise environments.
引用
收藏
页码:19524 / 19538
页数:15
相关论文
共 50 条
  • [21] Particle Filter for Underwater Bearings-only Passive Target Tracking
    Zhang Fei
    Zhou Xing-peng
    Chen Xiao-hui
    Liu Rui-lan
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 1798 - +
  • [22] Constrained Unscented Kalman Filtering for Bearings-Only Maneuvering Target Tracking
    ZHANG Hongwei
    XIE Weixin
    Chinese Journal of Electronics, 2020, 29 (03) : 501 - 507
  • [23] Constrained Unscented Kalman Filtering for Bearings-Only Maneuvering Target Tracking
    Zhang Hongwei
    Xie Weixin
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (03) : 501 - 507
  • [24] Multiplatform Bearing-Only Target Tracking Algorithm Based on Maximum Likelihood Maximum Correntropy Kalman Filter
    Zhang, Kai
    Wang, Hongjian
    Chen, Weihao
    Ren, Jingfei
    Luo, Naifu
    Lu, Zhenwei
    IEEE SENSORS JOURNAL, 2025, 25 (07) : 11366 - 11377
  • [25] Fusion Unbiased Pseudo-Linear Kalman Filter-Based Bearings-Only Target Tracking
    Cai, Zhihao
    Xing, Shiqi
    Meng, Weize
    Wang, Junpeng
    Su, Xinyuan
    Quan, Sinong
    REMOTE SENSING, 2024, 16 (23)
  • [26] Implementation of Pseudo-Linear Kalman Filter on DSP for Two Stations Bearings-only Target Tracking
    Zhu, Zheke
    Zhu, Shengli
    Lin, Yuesong
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 3770 - 3774
  • [27] Robust range-parameterized cubature Kalman filter for bearings-only tracking
    吴昊
    陈树新
    杨宾峰
    罗玺
    Journal of Central South University, 2016, 23 (06) : 1399 - 1405
  • [28] Robust Derivative-Free Cubature Kalman Filter for Bearings-Only Tracking
    Wu, Hao
    Chen, Shuxin
    Yang, Binfeng
    Chen, Kun
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (08) : 1865 - 1870
  • [29] A Gaussian-Sum Based Cubature Kalman Filter for Bearings-Only Tracking
    Leong, Pei H.
    Arulampalam, Sanjeev
    Lamahewa, Tharaka A.
    Abhayapala, Thushara D.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (02) : 1161 - 1176
  • [30] Robust range-parameterized cubature Kalman filter for bearings-only tracking
    Hao Wu
    Shu-xin Chen
    Bin-feng Yang
    Xi Luo
    Journal of Central South University, 2016, 23 : 1399 - 1405