Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types

被引:2
|
作者
Arora, Jantarika Kumar [1 ,2 ]
Opasawatchai, Anunya [3 ,4 ,7 ]
Teichmann, Sarah A. [5 ]
Matangkasombut, Ponpan [6 ,7 ]
Charoensawan, Varodom [2 ,4 ,7 ,8 ]
机构
[1] Mahidol Univ, Fac Sci, Philosophy Program Biochem, Int Program, Bangkok 10400, Thailand
[2] Mahidol Univ, Fac Sci, Dept Biochem, Bangkok 10400, Thailand
[3] Mahidol Univ, Fac Dent, Dept Oral Microbiol, Bangkok 10400, Thailand
[4] Mahidol Univ, Integrat Computat Biosci ICBS Ctr, Nakhon Pathom 73170, Thailand
[5] Wellcome Sanger Inst, Wellcome Trust Genome Campus, Cambridge CB10 1SA, England
[6] Mahidol Univ, Fac Sci, Dept Microbiol, Bangkok 10400, Thailand
[7] Fac Sci Mahidol Univ, Syst Biol Dis Res Unit, Fac Sci, Bangkok 10400, Thailand
[8] Suranaree Univ Technol, Inst Sci, Sch Chem, Nakhon Ratchasima 30000, Thailand
来源
STAR PROTOCOLS | 2023年 / 4卷 / 03期
基金
英国医学研究理事会;
关键词
DIFFERENTIAL EXPRESSION ANALYSIS;
D O I
10.1016/j.xpro.2023.102387
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Here, we present a computational approach for investigating highly variable genes (HVGs) associated with biological pathways of interest, across multiple time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using public dengue virus and COVID-19 datasets, we describe steps for using the framework to characterize the dynamic expression levels of HVGs related to common and cell-type-specific biological pathways over multiple immune cell types. For complete details on the use and execution of this protocol, please refer to Arora et al.1
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Yang, Shiyi
    Corbett, Sean E.
    Koga, Yusuke
    Wang, Zhe
    Johnson, W. Evan
    Yajima, Masanao
    Campbell, Joshua D.
    GENOME BIOLOGY, 2020, 21 (01)
  • [42] Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across Clytia medusa cell types
    Chari, Tara
    Weissbourd, Brandon
    Gehring, Jase
    Ferraioli, Anna
    Leclere, Lucas
    Herl, Makenna
    Gao, Fan
    Chevalier, Sandra
    Copley, Richard R.
    Houliston, Evelyn
    Anderson, David J.
    Pachter, Lior
    SCIENCE ADVANCES, 2021, 7 (48)
  • [43] Guidelines for reporting single-cell RNA-seq experiments
    Fullgrabe, Anja
    George, Nancy
    Green, Matthew
    Nejad, Parisa
    Aronow, Bruce
    Fexova, Silvie Korena
    Fischer, Clay
    Freeberg, Mallory Ann
    Huerta, Laura
    Morrison, Norman
    Scheuermann, Richard H.
    Taylor, Deanne
    Vasilevsky, Nicole
    Clarke, Laura
    Gehlenborg, Nils
    Kent, Jim
    Marioni, John
    Teichmann, Sarah
    Brazma, Alvis
    Papatheodorou, Irene
    NATURE BIOTECHNOLOGY, 2020, 38 (12) : 1384 - 1386
  • [44] Single-cell RNA-seq: advances and future challenges
    Saliba, Antoine-Emmanuel
    Westermann, Alexander J.
    Gorski, Stanislaw A.
    Vogel, Joerg
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : 8845 - 8860
  • [45] A SMARTer solution to stranded single-cell RNA-seq
    Gandlur, S.
    Pesant, M.
    Bolduc, N.
    Lee, S.
    Hardy, C.
    Das, A.
    Bostick, M.
    Farmer, A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1716 - 1717
  • [46] Multiple type 2 diabetes genes identified using single-cell RNA-seq of human islets
    Wierup, N.
    Martinez-Lopez, J. A.
    Fred, R. G.
    Munoz-Manchado, A.
    Hjerling-Leffler, J.
    DIABETOLOGIA, 2017, 60 : S67 - S67
  • [47] Integrative Single-Cell RNA-Seq and Single-Cell ATAC-Seq Analysis of Human Plasma Cell Differentiation
    Alaterre, Elina
    Ovejero, Sara
    Espeli, Marion
    Fest, Thierry
    Cogne, Michel
    Milpied, Pierre
    Cavalli, Giacomo
    Moreaux, Jerome
    BLOOD, 2023, 142
  • [48] Practical Compass of Single-Cell RNA-Seq Analysis
    Okada, Hiroyuki
    Chung, Ung-il
    Hojo, Hironori
    CURRENT OSTEOPOROSIS REPORTS, 2024, 22 (05) : 433 - 440
  • [49] Embracing the dropouts in single-cell RNA-seq analysis
    Peng Qiu
    Nature Communications, 11
  • [50] How deep is enough in single-cell RNA-seq?
    Aaron M Streets
    Yanyi Huang
    Nature Biotechnology, 2014, 32 : 1005 - 1006