共 50 条
Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types
被引:2
|作者:
Arora, Jantarika Kumar
[1
,2
]
Opasawatchai, Anunya
[3
,4
,7
]
Teichmann, Sarah A.
[5
]
Matangkasombut, Ponpan
[6
,7
]
Charoensawan, Varodom
[2
,4
,7
,8
]
机构:
[1] Mahidol Univ, Fac Sci, Philosophy Program Biochem, Int Program, Bangkok 10400, Thailand
[2] Mahidol Univ, Fac Sci, Dept Biochem, Bangkok 10400, Thailand
[3] Mahidol Univ, Fac Dent, Dept Oral Microbiol, Bangkok 10400, Thailand
[4] Mahidol Univ, Integrat Computat Biosci ICBS Ctr, Nakhon Pathom 73170, Thailand
[5] Wellcome Sanger Inst, Wellcome Trust Genome Campus, Cambridge CB10 1SA, England
[6] Mahidol Univ, Fac Sci, Dept Microbiol, Bangkok 10400, Thailand
[7] Fac Sci Mahidol Univ, Syst Biol Dis Res Unit, Fac Sci, Bangkok 10400, Thailand
[8] Suranaree Univ Technol, Inst Sci, Sch Chem, Nakhon Ratchasima 30000, Thailand
来源:
基金:
英国医学研究理事会;
关键词:
DIFFERENTIAL EXPRESSION ANALYSIS;
D O I:
10.1016/j.xpro.2023.102387
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Here, we present a computational approach for investigating highly variable genes (HVGs) associated with biological pathways of interest, across multiple time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using public dengue virus and COVID-19 datasets, we describe steps for using the framework to characterize the dynamic expression levels of HVGs related to common and cell-type-specific biological pathways over multiple immune cell types. For complete details on the use and execution of this protocol, please refer to Arora et al.1
引用
收藏
页数:20
相关论文