Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types

被引:2
|
作者
Arora, Jantarika Kumar [1 ,2 ]
Opasawatchai, Anunya [3 ,4 ,7 ]
Teichmann, Sarah A. [5 ]
Matangkasombut, Ponpan [6 ,7 ]
Charoensawan, Varodom [2 ,4 ,7 ,8 ]
机构
[1] Mahidol Univ, Fac Sci, Philosophy Program Biochem, Int Program, Bangkok 10400, Thailand
[2] Mahidol Univ, Fac Sci, Dept Biochem, Bangkok 10400, Thailand
[3] Mahidol Univ, Fac Dent, Dept Oral Microbiol, Bangkok 10400, Thailand
[4] Mahidol Univ, Integrat Computat Biosci ICBS Ctr, Nakhon Pathom 73170, Thailand
[5] Wellcome Sanger Inst, Wellcome Trust Genome Campus, Cambridge CB10 1SA, England
[6] Mahidol Univ, Fac Sci, Dept Microbiol, Bangkok 10400, Thailand
[7] Fac Sci Mahidol Univ, Syst Biol Dis Res Unit, Fac Sci, Bangkok 10400, Thailand
[8] Suranaree Univ Technol, Inst Sci, Sch Chem, Nakhon Ratchasima 30000, Thailand
来源
STAR PROTOCOLS | 2023年 / 4卷 / 03期
基金
英国医学研究理事会;
关键词
DIFFERENTIAL EXPRESSION ANALYSIS;
D O I
10.1016/j.xpro.2023.102387
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Here, we present a computational approach for investigating highly variable genes (HVGs) associated with biological pathways of interest, across multiple time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using public dengue virus and COVID-19 datasets, we describe steps for using the framework to characterize the dynamic expression levels of HVGs related to common and cell-type-specific biological pathways over multiple immune cell types. For complete details on the use and execution of this protocol, please refer to Arora et al.1
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Establishment of an Integrated Computational Workflow for Single Cell RNA-Seq Dataset
    Jiang, Miaomiao
    Yu, Qichao
    Xie, Jianming
    Liu, Shiping
    2019 9TH INTERNATIONAL CONFERENCE ON BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS (ICBBB 2019), 2019, : 22 - 27
  • [2] Investigating the biology of yeast aging by single-cell RNA-seq
    Zhang, Yi
    Zhang, Xiannian
    Kennedy, Brian K.
    AGING-US, 2023, 15 (15): : 7340 - 7342
  • [3] Integrative Analysis of Single-Cell RNA-Seq and ATAC-Seq Data across Treatment Time Points in Pediatric AML
    Wei, Lisa
    Trinh, Diane
    Ries, Rhonda E.
    Jin, Dan
    Corbett, Richard D.
    Smith, Jenny L.
    Furlan, Scott N.
    Meshinchi, Soheil
    Marra, Marco A.
    BLOOD, 2020, 136
  • [4] Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    Zeisel, Amit
    Munoz-Manchado, Ana B.
    Codeluppi, Simone
    Lonnerberg, Peter
    La Manno, Gioele
    Jureus, Anna
    Marques, Sueli
    Munguba, Hermany
    He, Liqun
    Betsholtz, Christer
    Rolny, Charlotte
    Castelo-Branco, Goncalo
    Hjerling-Leffler, Jens
    Linnarsson, Sten
    SCIENCE, 2015, 347 (6226) : 1138 - 1142
  • [5] Robust identification of perturbed cell types in single-cell RNA-seq data
    Nicol, Phillip B.
    Paulson, Danielle
    Qian, Gege
    Liu, X. Shirley
    Irizarry, Rafael
    Sahu, Avinash D.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [6] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [7] Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data
    Yip, Shun H.
    Sham, Pak Chung
    Wang, Junwen
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) : 1583 - 1589
  • [8] Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods
    Ryu, Yeonjae
    Han, Geun Hee
    Jung, Eunsoo
    Hwang, Daehee
    MOLECULES AND CELLS, 2023, 46 (02) : 106 - 119
  • [9] Single-Cell RNA-Seq Technologies and Related Computational Data Analysis
    Chen, Geng
    Ning, Baitang
    Shi, Tieliu
    FRONTIERS IN GENETICS, 2019, 10
  • [10] Scaling up single-cell RNA-seq data analysis with CellBridge workflow
    Nouri, Nima
    Kurlovs, Andre H.
    Gaglia, Giorgio
    de Rinaldis, Emanuele
    Savova, Virginia
    BIOINFORMATICS, 2023, 39 (12)