State of Charge and Temperature Joint Estimation Based on Ultrasonic Reflection Waves for Lithium-Ion Battery Applications

被引:48
|
作者
Zhang, Runnan [1 ,2 ]
Li, Xiaoyu [1 ,2 ]
Sun, Chuanyu [3 ]
Yang, Songyuan [1 ,2 ]
Tian, Yong [2 ]
Tian, Jindong [2 ]
机构
[1] Shenzhen Univ, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150001, Peoples R China
来源
BATTERIES-BASEL | 2023年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
lithium-ion battery; state of charge; temperature; ultrasonic reflected waves; multiple feature indicators; virtual samples; joint estimation method; battery management system; piezoelectric transducer;
D O I
10.3390/batteries9060335
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Accurate estimation of the state of charge (SOC) and temperature of batteries is essential to ensure the safety of energy storage systems. However, it is very difficult to obtain multiple states of the battery with fewer sensors. In this paper, a joint estimation method for a lithium iron phosphate battery's SOC and temperature based on ultrasonic reflection waves is proposed. A piezoelectric transducer is affixed to the surface of the battery for ultrasonic-electric transduction. Ultrasonic signals are excited at the transducer, transmitted through the battery, and transmitted back to the transducer by reaching the underside of the battery. Feature indicator extraction intervals of the battery state are determined by sliding-window matching correlation analysis. Virtual samples are used to expand the data after feature extraction. Finally, a backpropagation (BP) neural network model is applied to the multistate joint estimation of a battery in a wide temperature range. According to the experimental results, the root mean square error (RMSE) of the lithium-ion battery's SOC and temperature estimation results is 7.42% and 0.40 & DEG;C, respectively. The method is nondestructive and easy to apply in battery management systems. Combined with the detection of gas production inside the battery, this method can improve the safety of the battery system.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Review of lithium-ion battery state of charge estimation
    Ning Li
    Yu Zhang
    Fuxing He
    Longhui Zhu
    Xiaoping Zhang
    Yong Ma
    Shuning Wang
    Global Energy Interconnection, 2021, 4 (06) : 619 - 630
  • [12] Modeling and state of charge estimation of lithium-ion battery
    Chen, Xi-Kun
    Sun, Dong
    ADVANCES IN MANUFACTURING, 2015, 3 (03) : 202 - 211
  • [13] Fast Estimation of State of Charge for Lithium-ion Battery
    Chen, Hung-Cheng
    Chou, Shuo-Rong
    Chen, Hong-Chou
    Wu, Shing-Lih
    Chen, Liang-Rui
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 284 - 287
  • [14] Review of lithium-ion battery state of charge estimation
    Li, Ning
    Zhang, Yu
    He, Fuxing
    Zhu, Longhui
    Zhang, Xiaoping
    Ma, Yong
    Wang, Shuning
    GLOBAL ENERGY INTERCONNECTION-CHINA, 2021, 4 (06): : 619 - 630
  • [15] Modeling and state of charge estimation of lithium-ion battery
    Xi-Kun Chen
    Dong Sun
    AdvancesinManufacturing, 2015, 3 (03) : 202 - 211
  • [16] Lithium-ion Battery Modeling and State of Charge Estimation
    Wei Xiong
    Mo, Yimin
    Feng Zhang
    INTEGRATED FERROELECTRICS, 2019, 200 (01) : 59 - 72
  • [17] Lithium-ion Battery State of Charge Estimation based on Moving Horizon
    Ma Yan
    Zhou Xiuwen
    Zhang Jixing
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5002 - 5007
  • [18] State of Charge Estimation of Lithium-Ion Battery Based on IDRSN and BiGRU
    Zhang, Jiahao
    Chen, Jiadui
    He, Ling
    Liu, Dan
    Yang, Kai
    Liu, Qinghua
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (03)
  • [19] Lithium-ion battery state-of-charge estimation strategy for industrial applications
    Chen, Zilong
    Liao, Wenjun
    Li, Pingfei
    Tan, Jinhui
    Chen, Yuping
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENERGY, 2024, 177 (01) : 14 - 21
  • [20] Lithium-ion battery state-of-charge estimation strategy for industrial applications
    Chen Z.
    Tan J.
    Liao W.
    Chen Y.
    Li P.
    Proceedings of Institution of Civil Engineers: Energy, 2023, 177 (01): : 14 - 21