Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network

被引:7
|
作者
Zhang, Xiong [1 ,2 ]
Li, Jialu [2 ]
Wu, Wenbo [2 ]
Dong, Fan [2 ]
Wan, Shuting [1 ,2 ]
机构
[1] Hebei Key Lab Elect Machinery Hlth Maintenance & F, Baoding 071003, Peoples R China
[2] North China Elect Power Univ, Dept Mech Engn, Baoding 071003, Peoples R China
基金
中国国家自然科学基金;
关键词
convolution neural network; rolling bearing; multi-classification problem;
D O I
10.3390/e25050737
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
At present, the fault diagnosis methods for rolling bearings are all based on research with fewer fault categories, without considering the problem of multiple faults. In practical applications, the coexistence of multiple operating conditions and faults can lead to an increase in classification difficulty and a decrease in diagnostic accuracy. To solve this problem, a fault diagnosis method based on an improved convolution neural network is proposed. The convolution neural network adopts a simple structure of three-layer convolution. The average pooling layer is used to replace the common maximum pooling layer, and the global average pooling layer is used to replace the full connection layer. The BN layer is used to optimize the model. The collected multi-class signals are used as the input of the model, and the improved convolution neural network is used for fault identification and classification of the input signals. The experimental data of XJTU-SY and Paderborn University show that the method proposed in this paper has a good effect on the multi-classification of bearing faults.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Rolling Bearing Fault Diagnosis Based on Graph Convolution Neural Network
    Zhang, Yin
    Li, Hui
    INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I, 2022, 13393 : 195 - 207
  • [2] Fault Diagnosis of Fan Bearing Based on Improved Convolution Neural Network
    Ma, Boyang
    2020 ASIA CONFERENCE ON GEOLOGICAL RESEARCH AND ENVIRONMENTAL TECHNOLOGY, 2021, 632
  • [3] Rolling bearing fault diagnosis method based on improved densely connected convolution network
    Niu R.
    Ding H.
    Shi R.
    Meng X.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (11): : 252 - 258
  • [4] A Fault Diagnosis Model Based on Convolution Neural Network for Wind Turbine Rolling Bearing
    Yang, Zhiling
    Ma, Xiaoshan
    Ma, Yuanchi
    2018 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2019, 252
  • [5] The Method of Rolling Bearing Fault Diagnosis Based on Multi-Domain Supervised Learning of Convolution Neural Network
    Liu, Xuejun
    Sun, Wei
    Li, Hongkun
    Hussain, Zeeshan
    Liu, Aiqiang
    ENERGIES, 2022, 15 (13)
  • [6] Fault diagnosis of motor bearing based on improved convolution neural network based on VMD
    Yang, Qing
    Zhang, Jiyun
    Chen, Lin
    Wu, Dongsheng
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 405 - 409
  • [7] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [8] Multi-fault diagnosis with an improved neural network with ellipsoidal activation functions
    Jia, Minping
    Wang, Gang
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 1999, 19 (10): : 6 - 9
  • [9] A Bearing Fault Diagnosis Method Based on Improved Convolution Neural Network and Transfer Learning
    Jiang, Fan
    Shen, Xi
    Jiang, Feng
    Zhao, ZiShan
    Cheng, ShuMan
    INTERNATIONAL CONFERENCE ON INTELLIGENT EQUIPMENT AND SPECIAL ROBOTS (ICIESR 2021), 2021, 12127
  • [10] A study on rolling bearing fault diagnosis based on convolution capsule network
    Yang P.
    Su Y.
    Zhang Z.
    Su, Yanchen, 1600, Chinese Vibration Engineering Society (39): : 55 - 62and68