2.75D: Boosting learning by representing 3D Medical imaging to 2D features for small data

被引:6
|
作者
Wang, Xin [1 ]
Su, Ruisheng [2 ]
Xie, Weiyi [3 ]
Wang, Wenjin [4 ]
Xu, Yi [5 ]
Mann, Ritse [1 ]
Han, Jungong [6 ]
Tan, Tao [1 ,7 ]
机构
[1] Netherlands Canc Inst, Dept Radiol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[2] Erasmus MC, Doctor Molewaterpl 40, NL-3015 CD Rotterdam, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Geert Grootepl Zuid 10, NL-6525 GA Nijmegen, Netherlands
[4] Southern Univ Sci & Technol, Biomed Engn Dept, Xueyuan Blvd 1088, Shenzhen 518055, Peoples R China
[5] Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Media Proc & Transmiss, Dong Chuan Rd 800, Shanghai 200240, Peoples R China
[6] Univ Sheffield, Dept Comp Sci, Western Bank, Sheffield S10 2TN, England
[7] Macao Polytech Univ, Fac Appl Sci, Rua Luis Gonzaga Gomes, Macau, Peoples R China
关键词
Medical imaging; Spiral sampling; 2; 75D; Deep learning; MRI; CT; Luna cancer; Breast cancer; Prostate cancer; CONVOLUTIONAL NEURAL-NETWORK; PULMONARY NODULE DETECTION; FALSE-POSITIVE REDUCTION; COMPUTER-AIDED DETECTION; AUTOMATIC DETECTION; CT IMAGES; BREAST-CANCER; CLASSIFICATION; CNNS;
D O I
10.1016/j.bspc.2023.104858
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In medical-data driven learning, 3D convolutional neural networks (CNNs) have started to show superior performance to 2D CNNs in numerous deep learning tasks, proving the added value of 3D spatial information in feature representation. However, the difficulty in collecting more training samples to converge, more computational resources and longer execution time make this approach less applied. Also, applying transfer learning on 3D CNN is challenging due to a lack of publicly available pre-trained 3D models. To tackle these issues, we proposed a novel 2D strategical representation of volumetric data, namely 2.75D. In this work, the spatial information of 3D images is captured in a single 2D view by a spiral-spinning technique. As a result, 2D CNN networks can also be used to learn volumetric information. Besides, we can fully leverage pre-trained 2D CNNs for downstream vision problems. We also explore a multi-view 2.75D strategy, 2.75D 3 channels (2.75D x 3), to boost the advantage of 2.75D. We evaluated the proposed methods on three public datasets with different modalities or organs (Lung CT, Breast MRI, and Prostate MRI), against their 2D, 2.5D, and 3D counterparts in classification tasks. Results show that the proposed methods significantly outperform other counterparts when all methods were trained from scratch on the lung dataset. Such performance gain is more pronounced with transfer learning or in the case of limited training data. Our methods also achieved comparable performance on other datasets. In addition, our methods achieved a substantial reduction in time consumption of training and inference compared with the 2.5D or 3D method.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Steganographic Data Hiding In Automatic Converted 3D image From 2D And 2D To 3D Video Conversion
    Sariga, N. P.
    Sajitha, A. S.
    2015 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2015,
  • [42] Correction to: 3DTDesc: learning local features using 2D and 3D cues
    Xiaoxia Xing
    Yinghao Cai
    Tao Lu
    Yiping Yang
    Dayong Wen
    Machine Vision and Applications, 2021, 32
  • [43] Learning 2D to 3D Lifting for Object Detection in 3D for Autonomous Vehicles
    Srivastava, Siddharth
    Jurie, Frederic
    Sharma, Gaurav
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 4504 - 4511
  • [44] Boosting Charge Transport in a 2D/3D Perovskite Heterostructure by Selecting an Ordered 2D Perovskite as the Passivator
    Li, Chuanzhao
    Zhu, Renlong
    Yang, Zhe
    Lai, Jing
    Tan, Junjun
    Luo, Yi
    Ye, Shuji
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (07)
  • [45] Learning 3D Scene Priors with 2D Supervision
    Nie, Yinyu
    Dai, Angela
    Han, Xiaoguang
    Niessner, Matthias
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 792 - 802
  • [46] 3D and 2D/3D holograms model
    A. A. Boriskevich
    V. K. Erohovets
    V. V. Tkachenko
    Optical Memory and Neural Networks, 2012, 21 (4) : 242 - 248
  • [47] INSTANCE SEGMENTATION OF 3D MESH MODEL BY INTEGRATING 2D AND 3D DATA
    Wang, W. X.
    Zhong, G. X.
    Huang, J. J.
    Li, X. M.
    Xie, L. F.
    GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 1677 - 1684
  • [48] Enhancing 2D environments with 3D data input
    Patsakis, Constantinos
    Alexandris, Nikolaos
    Flerianou, Elina
    NEW DIRECTIONS IN INTELLIGENT INTERACTIVE MULTIMEDIA SYSTEMS AND SERVICES - 2, 2009, 226 : 321 - 326
  • [49] Boosting 3D Single Object Tracking with 2D Matching Distillation and 3D Pre-training
    Wu, Qiangqiang
    Xia, Yan
    Wan, Jia
    Chan, Antoni B.
    COMPUTER VISION - ECCV 2024, PT XII, 2025, 15070 : 270 - 288
  • [50] Network models of 2D and 3D carastral data
    Lewandowicz, Elzbieta
    9TH INTERNATIONAL CONFERENCE ENVIRONMENTAL ENGINEERING (9TH ICEE) - SELECTED PAPERS, 2014,