Structure of co-expression networks of Bifidobacterium species in response to human milk oligosaccharides

被引:3
|
作者
Gonzalez-Morelo, Kevin J. [1 ]
Galan-Vasquez, Edgardo [2 ]
Melis, Felipe [1 ]
Perez-Rueda, Ernesto [3 ]
Garrido, Daniel [1 ]
机构
[1] Pontificia Univ Catolica Chile, Sch Engn, Dept Chem & Bioproc Engn, Santiago, Chile
[2] Univ Nacl Autonoma Mexico, Dept Ingn Sistemas Computac & Automatizac, Inst Invest Matemat Aplicadas & Sistemas, Mexico City, Mexico
[3] Univ Nacl Autonoma Mexico, Unidad Acad Yucatan, Inst Invest Matemat Aplicadas & Sistemas, Merida, Mexico
关键词
Bifidobacterium; gut microbiota; co-expression network; HMOS; WGCNA; PREBIOTICS; GENES;
D O I
10.3389/fmolb.2023.1040721
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biological systems respond to environmental perturbations and a large diversity of compounds through gene interactions, and these genetic factors comprise complex networks. Experimental information from transcriptomic studies has allowed the identification of gene networks that contribute to our understanding of microbial adaptations. In this study, we analyzed the gene co-expression networks of three Bifidobacterium species in response to different types of human milk oligosaccharides (HMO) using weighted gene co-expression analysis (WGCNA). RNA-seq data obtained from Geo Datasets were obtained for Bifidobacterium longum subsp. Infantis, Bifidobacterium bifidum and Bifidobacterium longum subsp. Longum. Between 10 and 20 co-expressing modules were obtained for each dataset. HMO-associated genes appeared in the modules with more genes for B. infantis and B. bifidum, in contrast with B. longum. Hub genes were identified in each module, and in general they participated in conserved essential processes. Certain modules were differentially enriched with LacI-like transcription factors, and others with certain metabolic pathways such as the biosynthesis of secondary metabolites. The three Bifidobacterium transcriptomes showed distinct regulation patterns for HMO utilization. HMO-associated genes in B. infantis co-expressed in two modules according to their participation in galactose or N-Acetylglucosamine utilization. Instead, B. bifidum showed a less structured co-expression of genes participating in HMO utilization. Finally, this category of genes in B. longum clustered in a small module, indicating a lack of co-expression with main cell processes and suggesting a recent acquisition. This study highlights distinct co-expression architectures in these bifidobacterial genomes during HMO consumption, and contributes to understanding gene regulation and co-expression in these species of the gut microbiome.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Metrics to estimate differential co-expression networks
    Elpidio-Emmanuel Gonzalez-Valbuena
    Víctor Treviño
    BioData Mining, 10
  • [22] Emergence of co-expression in gene regulatory networks
    Yin, Wencheng
    Mendoza, Luis
    Monzon-Sandoval, Jimena
    Urrutia, Araxi O.
    Gutierrez, Humberto
    PLOS ONE, 2021, 16 (04):
  • [23] Metrics to estimate differential co-expression networks
    Gonzalez-Valbuena, Elpidio-Emmanuel
    Trevino, Victor
    BIODATA MINING, 2017, 10
  • [24] Integration of Co-expression Networks for Gene Clustering
    Bhattacharyya, Malay
    Bandyopadhyay, Sanghamitra
    ICAPR 2009: SEVENTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION, PROCEEDINGS, 2009, : 355 - 358
  • [25] Loss of Connectivity in Cancer Co-Expression Networks
    Anglani, Roberto
    Creanza, Teresa M.
    Liuzzi, Vania C.
    Piepoli, Ada
    Panza, Anna
    Andriulli, Angelo
    Ancona, Nicola
    PLOS ONE, 2014, 9 (01):
  • [26] Global similarity and local divergence in human and mouse gene co-expression networks
    Panayiotis Tsaparas
    Leonardo Mariño-Ramírez
    Olivier Bodenreider
    Eugene V Koonin
    I King Jordan
    BMC Evolutionary Biology, 6
  • [27] Global similarity and local divergence in human and mouse gene co-expression networks
    Tsaparas, Panayiotis
    Marino-Ramirez, Leonardo
    Bodenreider, Olivier
    Koonin, Eugene V.
    Jordan, I. King
    BMC EVOLUTIONARY BIOLOGY, 2006, 6 (1)
  • [28] Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide
    Gonzalez, Rina
    Klaassens, Elme S.
    Malinen, Erja
    de Vos, Willem M.
    Vaughan, Elaine E.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (15) : 4686 - 4694
  • [29] Structure-Function Relationships of Human Milk Oligosaccharides
    Bode, Lars
    Jantscher-Krenn, Evelyn
    ADVANCES IN NUTRITION, 2012, 3 (03) : 383S - 391S
  • [30] Bifidobacterium longum subsp infantis ATCC 15697 α-Fucosidases Are Active on Fucosylated Human Milk Oligosaccharides
    Sela, David A.
    Garrido, Daniel
    Lerno, Larry
    Wu, Shuai
    Tan, Kemin
    Eom, Hyun-Ju
    Joachimiak, Andrzej
    Lebrilla, Carlito B.
    Mills, David A.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (03) : 795 - 803