High-temperature energy storage polyimide dielectric materials: polymer multiple-structure design

被引:69
|
作者
Zha, Jun-Wei [1 ,2 ,3 ]
Tian, Yaya [1 ]
Zheng, Ming-Sheng [1 ]
Wan, Baoquan [1 ]
Yang, Xing [1 ]
Chen, George [4 ]
机构
[1] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Shunde Grad Sch, Shunde 528399, Peoples R China
[4] Univ Southampton, Dept Elect & Comp Sci, Southampton SO17 1BJ, England
基金
中国国家自然科学基金;
关键词
Polymer structure; Polyimide; Energy storage; Polarization mechanism; Dielectric properties; RATIONAL CO-DESIGN; BREAKDOWN STRENGTH; ELECTRIC STRENGTH; DENSITY; COMPOSITES; CONSTANT; FILMS; NANOCOMPOSITES;
D O I
10.1016/j.mtener.2022.101217
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer dielectrics have been proved to be critical materials for film capacitors with high energy density. However, the harsh operating environment requires dielectrics with high thermal stability, which is lacking in commercial dielectric film. Polyimide (PI) is considered a potential candidate for high-temperature energy storage dielectric materials due to its excellent thermal stability and insulating properties. This review expounds on the design strategies to improve the energy storage properties of polyimide dielectric materials from the perspective of polymer multiple structures, including short -range structures, remote structures and higher-order structures. The introduction of highly polar groups, the regulation technology of different molecular segment structures and the blending method of all-organic polyimide are discussed in depth. The development of computational simulation methods in high-temperature energy storage polyimide dielectrics is also presented. Finally, the key problems faced by using polyimide as a high-temperature energy storage dielectric material are summarized, and the future development direction is explored.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage
    Chao Yuan
    Yao Zhou
    Yujie Zhu
    Jiajie Liang
    Shaojie Wang
    Simin Peng
    Yushu Li
    Sang Cheng
    Mingcong Yang
    Jun Hu
    Bo Zhang
    Rong Zeng
    Jinliang He
    Qi Li
    Nature Communications, 11
  • [22] Polyimide composites crosslinked by aromatic molecules for high-temperature capacitive energy storage
    Wang, Feng
    Wang, Hao
    Shi, Xiaoming
    Diao, Chunli
    Li, Chaolong
    Li, Weikun
    Liu, Xu
    Zheng, Haiwu
    Huang, Houbing
    Li, Xiaoguang
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [23] A polymer nanocomposite for high-temperature energy storage with thermal stability
    Ge, Pengzu
    Li, Lili
    Jiang, Mengquan
    Wang, Gaofeng
    Wen, Fei
    Gao, Xiaoyi
    CELL REPORTS PHYSICAL SCIENCE, 2025, 6 (01):
  • [24] Nanofiber-reinforced polymer nanocomposite with hierarchical interfaces for high-temperature dielectric energy storage applications
    Zhi, Jiapeng
    Wang, Jian
    Shen, Zhonghui
    Li, Baowen
    Zhang, Xin
    Nan, Ce-Wen
    SCIENCE CHINA-MATERIALS, 2023, 66 (07) : 2652 - 2661
  • [25] Polymer-based dielectric materials for high-temperature film capacitors
    Cheng, S.
    Zhou, Y.
    Li, Q.
    2018 IEEE INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), 2018,
  • [26] Scalable Ultrathin All-Organic Polymer Dielectric Films for High-Temperature Capacitive Energy Storage
    Ren, Weibin
    Yang, Minzheng
    Zhou, Le
    Fan, Youjun
    He, Shan
    Pan, Jiayu
    Tang, Tongxiang
    Xiao, Yao
    Nan, Ce-Wen
    Shen, Yang
    ADVANCED MATERIALS, 2022, 34 (47)
  • [27] High-temperature phase change materials for thermal energy storage
    Kenisarin, Murat M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (03): : 955 - 970
  • [28] High-temperature and high-energy-density polymer dielectrics for capacitive energy storage
    Zhou, Yao
    Li, Qi
    2018 IEEE 2ND INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD), 2018,
  • [29] High-temperature and high-energy-density polymer dielectrics for capacitive energy storage
    Zhou, Yao
    Li, Qi
    2018 IEEE 2ND INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD), 2018,
  • [30] Dielectric polymers with mechanical bonds for high-temperature capacitive energy storage
    Wang, Rui
    Zhu, Yujie
    Huang, Shangshi
    Fu, Jing
    Zhou, Yifan
    Li, Manxi
    Meng, Li
    Zhang, Xiyu
    Liang, Jiajie
    Ran, Zhaoyu
    Yang, Mingcong
    Li, Junluo
    Dong, Xinhua
    Hu, Jun
    He, Jinliang
    Li, Qi
    NATURE MATERIALS, 2025,