Theoretical and Numerical Analysis of Fractional Order Mathematical Model on Recent COVID-19 Model Using Singular Kernel

被引:1
|
作者
Verma, Pratibha [1 ]
Tiwari, Surabhi [2 ]
Verma, Akanksha [3 ]
机构
[1] Siksha OAnusandhan Deemed be Univ, Fac Engn & Technol, Bhubaneswar 751030, Orissa, India
[2] Motilal Nehru Natl Inst Technol Allahabad, Dept Math, Prayagraj 211004, Uttar Pradesh, India
[3] Kalasalingam Acad Res & Educ, Sch Adv Sci, Dept Math, Krishnankoil 626128, Tamil Nadu, India
关键词
Novel coronavirus; Caputo fractional derivative; Fixed point theorem; Positive solutions; Existence and uniqueness; Hyers-Ulam stability; Runge-kutta method; Euler method;
D O I
10.1007/s40010-022-00805-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study presents a fractional-order mathematical model of coronavirus. We select COVID-19 model and convert the model into fractional order. Discuss its theoretical and numerical analysis. Firstly, we investigate the existence and uniqueness results using some fixed point theorems for the proposed fractional-order COVID-19 model. Further, we provide the stability analysis with the help of the Hyers-Ulam stability. The fractional operator is used in the Caputo sense. We obtain numerical solutions using famous numerical methods and provide a graphical interpretation using adopted numerical methods. Finally, we compare the above techniques and provide observations according to the obtained solutions.
引用
收藏
页码:219 / 232
页数:14
相关论文
共 50 条
  • [31] A fractional-order mathematical model for analyzing the pandemic trend of COVID-19
    Agarwal, Praveen
    Ramadan, Mohamed A.
    Rageh, Abdulqawi A. M.
    Hadhoud, Adel R.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (08) : 4625 - 4642
  • [32] A mathematical model for COVID-19 transmission by using the Caputo fractional derivative
    Nguyen Huy Tuan
    Mohammadi, Hakimeh
    Rezapour, Shahram
    CHAOS SOLITONS & FRACTALS, 2020, 140 (140)
  • [33] An Application of the Caputo Fractional Domain in the Analysis of a COVID-19 Mathematical Model
    Baishya, Chandrali
    Achar, Sindhu J.
    Veeresha, P.
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 255 - 283
  • [34] Correction to: A Fractional Order Covid-19 Epidemic Model with Mittag-Leffler Kernel
    H. Khan
    M. Ibrahim
    A. Khan
    O. Tunç
    Th. Abdeljawad
    Journal of Mathematical Sciences, 2023, 273 (2) : 332 - 332
  • [35] Generalized form of fractional order COVID-19 model with Mittag-Leffler kernel
    Aslam, Muhammad
    Farman, Muhammad
    Akgul, Ali
    Ahmad, Aqeel
    Sun, Meng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8598 - 8614
  • [36] A Legendre Tau method for numerical solution of multi-order fractional mathematical model for COVID-19 disease
    Bidarian, Marjan
    Saeedi, Habibollah
    Shahryari, Mohammad Reza Balooch
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2023, 11 (04): : 834 - 850
  • [37] Analytical solutions and numerical simulation of COVID-19 fractional order mathematical model by Caputo and conformable fractional differential transform method
    Nagargoje, A. D.
    Borkar, V. C.
    Muneshwar, R. A.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (04): : 653 - 673
  • [38] Fuzzy fractional mathematical model of COVID-19 epidemic
    Padmapriya, V
    Kaliyappan, M.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3299 - 3321
  • [39] On fractal-fractional Covid-19 mathematical model
    Khan, Hasib
    Ahmad, Farooq
    Tunc, Osman
    Idrees, Muhammad
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [40] A Numerical Confirmation of a Fractional-Order COVID-19 Model's Efficiency
    Batiha, Iqbal M.
    Obeidat, Ahmad
    Alshorm, Shameseddin
    Alotaibi, Ahmed
    Alsubaie, Hajid
    Momani, Shaher
    Albdareen, Meaad
    Zouidi, Ferjeni
    Eldin, Sayed M.
    Jahanshahi, Hadi
    SYMMETRY-BASEL, 2022, 14 (12):