Early dietitian referral in lung cancer: use of machine learning

被引:2
|
作者
Chung, Michael [1 ]
Phillips, Iain [2 ]
Allan, Lindsey [3 ]
Westran, Naomi [3 ]
Hug, Adele [3 ]
Evans, Philip M. [1 ,4 ]
机构
[1] Univ Surrey, CVSSP, Guildford, Surrey, England
[2] Western Gen Hosp, Edinburgh Canc Ctr, Edinburgh EH4 2XU, Midlothian, Scotland
[3] Royal Surrey Cty Hosp NHS Fdn Trust, Dept Nutr & Dietet, Guildford, Surrey, England
[4] Natl Phys Lab, Chem Med & Environm Sci, Teddington, Middx, England
关键词
cachexia; lung; symptoms and symptom management; NUTRITIONAL-STATUS; WEIGHT-LOSS; CHEMOTHERAPY;
D O I
10.1136/bmjspcare-2021-003487
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objectives The Dietetic Assessment and Intervention in Lung Cancer (DAIL) study was an observational cohort study. It triaged the need for dietetic input in patients with lung cancer, using questionnaires with 137 responses. This substudy tested if machine learning could predict need to see a dietitian (NTSD) using 5 or 10 measures. Methods 76 cases from DAIL were included (Royal Surrey NHS Foundation Trust; RSH: 56, Frimley Park Hospital; FPH 20). Univariate analysis was used to find the strongest correlates with NTSD and 'critical need to see a dietitian' CNTSD. Those with a Spearman correlation above +/- 0.4 were selected to train a support vector machine (SVM) to predict NTSD and CNTSD. The 10 and 5 best correlates were evaluated. Results 18 and 13 measures had a correlation above +/- 0.4 for NTSD and CNTSD, respectively, producing SVMs with 3% and 7% misclassification error. 10 measures yielded errors of 7% (NTSD) and 9% (CNTSD). 5 measures yielded between 7% and 11% errors. SVM trained on the RSH data and tested on the FPH data resulted in errors of 20%. Conclusions Machine learning can predict NTSD producing misclassification errors <10%. With further work, this methodology allows integrated early referral to a dietitian independently of a healthcare professional.
引用
收藏
页码:56 / 59
页数:4
相关论文
共 50 条
  • [41] IMPROVED LUNG CANCER REFERRAL RATES AND EARLY DIAGNOSIS IN A DISTRICT GENERAL HOSPITAL
    Sidhu, M. S.
    Gulati, A. G.
    Hawkins, P. H.
    Cooper, S. C.
    THORAX, 2014, 69 : A106 - A106
  • [42] Optimizing Lung Cancer Classification with Extreme Learning Machine and Ant Lion Optimization for Enhanced Early Detection
    Rengasamy, Vidhya
    Nadar, Mirnalinee Thanka
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 2185 - 2193
  • [43] Clinical Practice Guideline for the early detection and timely referral of lung cancer patients
    Arroyo-Hernandez, Marisol
    Felipe Alva-Lopez, Luis
    Rendon, Adrian
    Raul Barroso-Villafuerte, Francisco
    Baez-Saldana, Renata
    Francisco Corona-Cruz, Jose
    Farfan-Salazar, Georgina
    Guerrero-Ixtlahuac, Jorge
    Castillo-Gonzalez, Patricia
    Salmon-Demongin, Alfredo
    Zaldivar-Crosby, Guillermo
    Bolano-Guerra, Laura M.
    Gamed Zavala-Cruz, Gad
    Alejandro Sanchez-Gutierrez, Jaime
    Joel Rendon-Ramirez, Erick
    Magdaleno-Maldonado, Gerardo E.
    Olivares-Torres, Carlos A.
    Alejandro Lopez-Saucedo, Raul
    Lizardo, Adolfo E.
    Ortiz-Vazquez, Sandra
    Vazquez-Garcia, Jorge
    Montes-Narvaez, Gabriel
    Pacheco-Juarez, Mariana
    Arrieta, Oscar
    SALUD PUBLICA DE MEXICO, 2022, 64 (05): : 530 - 538
  • [44] Detection of early-stage lung cancer in sputum using automated flow cytometry and machine learning
    Madeleine E. Lemieux
    Xavier T. Reveles
    Jennifer Rebeles
    Lydia H. Bederka
    Patricia R. Araujo
    Jamila R. Sanchez
    Marcia Grayson
    Shao-Chiang Lai
    Louis R. DePalo
    Sheila A. Habib
    David G. Hill
    Kathleen Lopez
    Lara Patriquin
    Robert Sussman
    Roby P. Joyce
    Vivienne I. Rebel
    Respiratory Research, 24
  • [45] Detection of early-stage lung cancer in sputum using automated flow cytometry and machine learning
    Lemieux, Madeleine E.
    Reveles, Xavier T.
    Rebeles, Jennifer
    Bederka, Lydia H.
    Araujo, Patricia R.
    Sanchez, Jamila R.
    Grayson, Marcia
    Lai, Shao-Chiang
    DePalo, Louis R.
    Habib, Sheila A.
    Hill, David G.
    Lopez, Kathleen
    Patriquin, Lara
    Sussman, Robert
    Joyce, Roby P.
    Rebel, Vivienne I.
    RESPIRATORY RESEARCH, 2023, 24 (01)
  • [46] Incidental discovery is the prevalent referral pathway to surgery for early stage lung cancer
    Brazil, S. V.
    Brown, J. M.
    McAsey, D.
    Nankivell, M.
    Lawrence, D. R.
    George, J. P.
    Janes, S. M.
    Navani, N.
    LUNG CANCER, 2013, 79 : S35 - S35
  • [47] Early cancer detection by SERS spectroscopy and machine learning
    Lingyan Shi
    Yajuan Li
    Zhi Li
    Light: Science & Applications, 12
  • [48] Early cancer detection by SERS spectroscopy and machine learning
    Shi, Lingyan
    Li, Yajuan
    Li, Zhi
    LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)
  • [49] Impact of a Lung Nodule Referral Program on Early-stage Lung Cancer Diagnosis: A Retrospective Review
    Nieves, L. E. Irizarry
    Rodriguez, W.
    Torres-Palacios, J.
    Vando, V.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [50] Use Test of Automated Machine Learning in Cancer Diagnostics
    Musigmann, Manfred
    Nacul, Nabila Gala
    Kasap, Dilek N.
    Heindel, Walter
    Mannil, Manoj
    DIAGNOSTICS, 2023, 13 (14)