Revisiting Ćirić-Reich-Rus type iterated function systems

被引:0
|
作者
Prithvi, B. V. [1 ]
Katiyar, S. K. [2 ]
机构
[1] SRM Inst Sci & Technol, Dept Math, Chennai 603201, Tamil Nadu, India
[2] Dr BR Ambedkar Natl Inst Technol NIT, Dept Math, Jalandhar 144011, Punjab, India
关键词
Iterated function system; Fractal operator; Attractor; Picard operator;
D O I
10.1007/s12215-024-01005-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Hutchinson-Barnsley approach, we provide another way to proving that a Ciric-Reich-Rus type iterated function system (IFS) has a unique attractor than that taken by Miculescu and Mihail (J Fixed Point Theory Appl 18(2), 285-296, 2016).
引用
收藏
页码:1823 / 1842
页数:20
相关论文
共 50 条
  • [21] Unified multivalued interpolative Reich-Rus-Ciri-type contractions
    Alansari, Monairah
    Ali, Muhammad Usman
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [22] Iterated function systems of finite type and the weak separation property
    Nguyen, N
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) : 483 - 487
  • [23] Dendrite-type attractors of infinite iterated function systems
    Dumitru, Dan
    AFRIKA MATEMATIKA, 2015, 26 (5-6) : 1161 - 1169
  • [24] Iterated function systems and dynamical systems
    Gora, P
    Boyarsky, A
    CHAOS, 1995, 5 (04) : 634 - 639
  • [25] Interpolative Reich-Rus-Ciric Type Contractions on Partial Metric Spaces
    Karapinar, Erdal
    Agarwal, Ravi
    Aydi, Hassen
    MATHEMATICS, 2018, 6 (11):
  • [26] Interpolative Ciric-Reich-Rus Type Contractions via the Branciari Distance
    Aydi, Hassen
    Chen, Chi-Ming
    Karapinar, Erdal
    MATHEMATICS, 2019, 7 (01)
  • [27] Interpolative Rus-Reich-Ciric Type Contractions via Simulation Functions
    Karapnar, Erdal
    Agarwal, Ravi P.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (03): : 137 - 152
  • [28] On chaos for iterated function systems
    Bahabadi, Alireza Zamani
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (04)
  • [29] Ends of iterated function systems
    Gregory R. Conner
    Wolfram Hojka
    Mathematische Zeitschrift, 2014, 277 : 1073 - 1083
  • [30] Chaotic iterated function systems
    Sarizadeh, Aliasghar
    ARCHIV DER MATHEMATIK, 2022, 119 (05) : 531 - 538