Removal of Cr(VI) by glutaraldehyde-crosslinked chitosan encapsulating microscale zero-valent iron: Synthesis, mechanism, and longevity

被引:13
|
作者
Duan, Yijun [1 ]
Liu, Fang [2 ]
Liu, Xiang [1 ]
Li, Miao [1 ]
机构
[1] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
[2] Inner Mongolia Univ, Transportat Inst, Hohhot 010070, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Chitosan; Glutaraldehyde; mZVI; Cr(VI); Groundwater; AQUEOUS-SOLUTIONS; ADSORPTION; KINETICS; SORPTION; MZVI; NANOCOMPOSITE; EFFICIENCY; ADSORBENT; SALINE; FRESH;
D O I
10.1016/j.jes.2023.07.005
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microscale zero-valent iron (mZVI) has shown great potential for groundwater Cr(VI) remediation. However, low Cr(VI) removal capacity caused by passivation restricted the wide use of mZVI. We prepared mZVI/GCS by encapsulating mZVI in a porous glutaraldehydecrosslinked chitosan matrix, and the formation of the passivation layer was alleviated by reducing the contact between zero-valent iron particles. The average pore diameter of mZVI/GCS was 8.775 nm, which confirmed the mesoporous characteristic of this material. Results of batch experiments demonstrated that mZVI/GCS exhibited high Cr(VI) removal efficiency in a wide range of pH (2-10) and temperature (5-35 degrees C). Common groundwater coexisting ions slightly affected mZVI/GCS. The material showed great reusability, and the average Cr(VI) removal efficiency was 90.41% during eight cycles. In this study, we also conducted kinetics and isotherms analysis. Pseudo-second-order model was the most matched kinetics model. The Cr(VI) adsorption process was fitted by both Langmuir and Freundlich isotherms models, and the maximum Langmuir adsorption capacity of mZVI/GCS reached 243.63 mg/g, which is higher than the adsorption capacities of materials reported in most of the previous studies. Notably, the column capacity for Cr(VI) removal of a mZVI/GCS-packed column was 6.4 times higher than that of a mZVI-packed column in a 50-day experiment. Therefore, mZVI/GCS with a porous structure effectively relieved passivation problems of mZVI and showed practical application prospects as groundwater Cr(VI) remediation material with practical application prospects. (c) 2024 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 50 条
  • [21] Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal
    Zhongsen Wang
    Lijun Qiu
    Yunhua Huang
    Meng Zhang
    Xi Cai
    Fanyu Wang
    Yang Lin
    Yanbiao Shi
    Xiao Liu
    Chinese Chemical Letters, 2024, 35 (07) : 218 - 221
  • [22] Kinetic and Mechanism Study of PFOS Removal by Microscale Zero-Valent Iron from Water
    Ji, Meng
    Christodoulatos, Christos
    Shi, Qiantao
    Zhao, Bo
    Smolinski, Benjamin
    Sheets, Steven
    Korfiatis, George
    Meng, Xiaoguang
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2025, 59 (12) : 6297 - 6306
  • [23] A novel manganese sulfide encapsulating biochar-dispersed zero-valent iron composite for high removal ability of Cr(VI) in water and its mechanism
    Wei, Junqi
    Duan, Yu
    Li, Mingzhi
    Lin, Haiying
    Lv, Jiatong
    Chen, Zixuan
    Lin, Jia
    Song, Hainong
    Zhang, Ronghai
    Li, Lianghong
    Huang, Lixin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 658
  • [24] Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron
    Zhang, Yuling
    Li, Yimin
    Li, Jianfa
    Sheng, Guodong
    Zhang, Yun
    Zheng, Xuming
    CHEMICAL ENGINEERING JOURNAL, 2012, 185 : 243 - 249
  • [25] Removal of Cr(VI) from wastewater by modified montmorillonite in combination with zero-valent iron
    Ordinartsev, D. P.
    Pechishcheva, N., V
    Estemirova, S. Kh
    Kim, A., V
    Shunyaev, K. Yu
    HYDROMETALLURGY, 2022, 208
  • [26] Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron
    Li, Y. (liym@usx.edu.cn), 1600, Elsevier B.V. (185-186):
  • [27] Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism
    Mao, Yujie
    Tao, Yufang
    Zhang, Xulin
    Chu, Zhaopeng
    Zhang, Xinyi
    Huang, He
    WATER AIR AND SOIL POLLUTION, 2023, 234 (03):
  • [28] Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism
    Yujie Mao
    Yufang Tao
    Xulin Zhang
    Zhaopeng Chu
    Xinyi Zhang
    He Huang
    Water, Air, & Soil Pollution, 2023, 234
  • [29] Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron
    Zeng T.
    Nong H.
    Sha H.
    Chen S.
    Zhang X.
    Liu J.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (02): : 1037 - 1049
  • [30] In situ carbothermal synthesis of carbonized bacterial cellulose embedded with nano zero-valent iron for removal of Cr(VI)
    Ma, Bo
    Wang, Yan
    Zhu, Jianguo
    Liu, Dan
    Chen, Chuntao
    Sun, Bianjing
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 267