TEPCAM: Prediction of T-cell receptor-epitope binding specificity via interpretable deep learning

被引:4
|
作者
Chen, Junwei [1 ]
Zhao, Bowen [1 ]
Lin, Shenggeng [1 ]
Sun, Heqi [1 ]
Mao, Xueying [1 ]
Wang, Meng [2 ]
Chu, Yanyi [3 ]
Hong, Liang [4 ,5 ]
Wei, Dong-Qing [1 ]
Li, Min [2 ,6 ]
Xiong, Yi [1 ,5 ,7 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, State Key Lab Microbial Metab, Shanghai, Peoples R China
[2] Cent South Univ, Sch Comp Sci & Engn, Hunan Prov Key Lab Bioinformat, Changsha, Peoples R China
[3] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA USA
[4] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai, Peoples R China
[5] Shanghai Jiao Tong Univ, Zhangjiang Inst Adv Study, Artificial Intelligence Biomed Ctr, Shanghai, Peoples R China
[6] Cent South Univ, Sch Comp Sci & Engn, Hunan Prov Key Lab Bioinformat, Changsha 410083, Peoples R China
[7] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, State Key Lab Microbial Metab, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
convolution; cross-attention; deep learning; model interpretability; TCR-epitope binding specificity; RECOGNITION; ANTIGENS;
D O I
10.1002/pro.4841
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The recognition of T-cell receptor (TCR) on the surface of T cell to specific epitope presented by the major histocompatibility complex is the key to trigger the immune response. Identifying the binding rules of TCR-epitope pair is crucial for developing immunotherapies, including neoantigen vaccine and drugs. Accurate prediction of TCR-epitope binding specificity via deep learning remains challenging, especially in test cases which are unseen in the training set. Here, we propose TEPCAM (TCR-EPitope identification based on Cross-Attention and Multi-channel convolution), a deep learning model that incorporates self-attention, cross-attention mechanism, and multi-channel convolution to improve the generalizability and enhance the model interpretability. Experimental results demonstrate that our model outperformed several state-of-the-art models on two challenging tasks including a strictly split dataset and an external dataset. Furthermore, the model can learn some interaction patterns between TCR and epitope by extracting the interpretable matrix from cross-attention layer and mapping them to the three-dimensional structures. The source code and data are freely available at https://github.com/Chenjw99/TEPCAM.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Unlocking T-cell receptor-epitope insights with structural analysis
    Huo, Miaozhe
    Jiang, Yuepeng
    Li, Shuai Cheng
    [J]. NATURE COMPUTATIONAL SCIENCE, 2024, 4 (07): : 475 - 476
  • [2] Deep learning-based prediction of the T cell receptor–antigen binding specificity
    Tianshi Lu
    Ze Zhang
    James Zhu
    Yunguan Wang
    Peixin Jiang
    Xue Xiao
    Chantale Bernatchez
    John V. Heymach
    Don L. Gibbons
    Jun Wang
    Lin Xu
    Alexandre Reuben
    Tao Wang
    [J]. Nature Machine Intelligence, 2021, 3 : 864 - 875
  • [3] Deep learning-based prediction of the T cell receptor-antigen binding specificity
    Lu, Tianshi
    Zhang, Ze
    Zhu, James
    Wang, Yunguan
    Jiang, Peixin
    Xiao, Xue
    Bernatchez, Chantale
    Heymach, John, V
    Gibbons, Don L.
    Wang, Jun
    Xu, Lin
    Reuben, Alexandre
    Wang, Tao
    [J]. NATURE MACHINE INTELLIGENCE, 2021, 3 (10) : 864 - +
  • [4] TCR-H: explainable machine learning prediction of T-cell receptor epitope binding on unseen datasets
    Rajeshwar, T. Rajitha
    Demerdash, Omar N. A.
    Smith, Jeremy C.
    [J]. FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [5] TEINet: a deep learning framework for prediction of TCR-epitope binding specificity
    Jiang, Yuepeng
    Huo, Miaozhe
    Cheng Li, Shuai
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
  • [6] Prediction of T-cell epitope
    Tsurui, Rornichi
    Takahashi, Takuya
    [J]. JOURNAL OF PHARMACOLOGICAL SCIENCES, 2007, 105 (04) : 299 - 316
  • [7] GTE: a graph learning framework for prediction of T-cell receptors and epitopes binding specificity
    Jiang, Feng
    Guo, Yuzhi
    Ma, Hehuan
    Na, Saiyang
    Zhong, Wenliang
    Han, Yi
    Wang, Tao
    Huang, Junzhou
    [J]. BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [8] T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity
    Stone, Jennifer D.
    Chervin, Adam S.
    Kranz, David M.
    [J]. IMMUNOLOGY, 2009, 126 (02) : 165 - 176
  • [9] Industry return prediction via interpretable deep learning
    Zografopoulos, Lazaros
    Iannino, Maria Chiara
    Psaradellis, Ioannis
    Sermpinis, Georgios
    [J]. European Journal of Operational Research, 2025, 321 (01) : 257 - 268
  • [10] Determining epitope specificity of T-cell receptors with transformers
    Khan, Abdul Rehman
    Reinders, Marcel J. T.
    Khatri, Indu
    [J]. BIOINFORMATICS, 2023, 39 (11)