Industry return prediction via interpretable deep learning

被引:0
|
作者
Zografopoulos, Lazaros [1 ]
Iannino, Maria Chiara [1 ]
Psaradellis, Ioannis [2 ]
Sermpinis, Georgios [3 ]
机构
[1] University of St Andrews Business School, University of St Andrews, United Kingdom
[2] University of Edinburgh Business School, University of Edinburgh, United Kingdom
[3] Adam Smith Business School, University of Glasgow, United Kingdom
关键词
Contrastive Learning - Prediction models;
D O I
10.1016/j.ejor.2024.08.032
中图分类号
学科分类号
摘要
We apply an interpretable machine learning model, the LassoNet, to forecast and trade U.S. industry portfolio returns. The model combines a regularization mechanism with a neural network architecture. A cooperative game-theoretic algorithm is also applied to interpret our findings. The latter hierarchizes the covariates based on their contribution to the overall model performance. Our findings reveal that the LassoNet outperforms various linear and nonlinear benchmarks concerning out-of-sample forecasting accuracy and provides economically meaningful and profitable predictions. Valuation ratios are the most crucial covariates, followed by individual and cross-industry lagged returns. The constructed industry ETF portfolios attain positive Sharpe ratios and positive and statistically significant alphas, surviving even transaction costs. © 2024
引用
收藏
页码:257 / 268
相关论文
共 50 条
  • [1] Interpretable Deep Learning for Probabilistic MJO Prediction
    Delaunay, Antoine
    Christensen, Hannah M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (16)
  • [2] Generalizable and Interpretable Deep Learning for Network Congestion Prediction
    Poularakis, Konstantinos
    Qin, Qiaofeng
    Le, Franck
    Kompella, Sastry
    Tassiulas, Leandros
    [J]. 2021 IEEE 29TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP 2021), 2021,
  • [3] Infusing theory into deep learning for interpretable reactivity prediction
    Shih-Han Wang
    Hemanth Somarajan Pillai
    Siwen Wang
    Luke E. K. Achenie
    Hongliang Xin
    [J]. Nature Communications, 12
  • [4] Infusing theory into deep learning for interpretable reactivity prediction
    Wang, Shih-Han
    Pillai, Hemanth Somarajan
    Wang, Siwen
    Achenie, Luke E. K.
    Xin, Hongliang
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] Antibody structure prediction using interpretable deep learning
    Ruffolo, Jeffrey A.
    Sulam, Jeremias
    Gray, Jeffrey J.
    [J]. PATTERNS, 2022, 3 (02):
  • [6] A Novel Interpretable Deep Learning Model for Ozone Prediction
    Chen, Xingguo
    Li, Yang
    Xu, Xiaoyan
    Shao, Min
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [7] Customized Stock Return Prediction with Deep Learning
    Felder, Christopher
    Mayer, Stefan
    [J]. 2022 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING AND ECONOMICS (CIFER), 2022,
  • [8] Interpretable Deep Learning Prediction Model for Compressive Strength of Concrete
    Zhang, Wei-Qi
    Wang, Hui-Ming
    [J]. Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (05): : 738 - 744
  • [9] Interpretable survival prediction for colorectal cancer using deep learning
    Wulczyn, Ellery
    Steiner, David F.
    Moran, Melissa
    Plass, Markus
    Reihs, Robert
    Tan, Fraser
    Flament-Auvigne, Isabelle
    Brown, Trissia
    Regitnig, Peter
    Chen, Po-Hsuan Cameron
    Hegde, Narayan
    Sadhwani, Apaar
    MacDonald, Robert
    Ayalew, Benny
    Corrado, Greg S.
    Peng, Lily H.
    Tse, Daniel
    Müller, Heimo
    Xu, Zhaoyang
    Liu, Yun
    Stumpe, Martin C.
    Zatloukal, Kurt
    Mermel, Craig H.
    [J]. arXiv, 2020,
  • [10] Interpretable survival prediction for colorectal cancer using deep learning
    Ellery Wulczyn
    David F. Steiner
    Melissa Moran
    Markus Plass
    Robert Reihs
    Fraser Tan
    Isabelle Flament-Auvigne
    Trissia Brown
    Peter Regitnig
    Po-Hsuan Cameron Chen
    Narayan Hegde
    Apaar Sadhwani
    Robert MacDonald
    Benny Ayalew
    Greg S. Corrado
    Lily H. Peng
    Daniel Tse
    Heimo Müller
    Zhaoyang Xu
    Yun Liu
    Martin C. Stumpe
    Kurt Zatloukal
    Craig H. Mermel
    [J]. npj Digital Medicine, 4