On Galilean invariance of mean kinetic helicity

被引:0
|
作者
Tehrani, Dina Soltani [1 ]
Aluie, H. [1 ,2 ]
机构
[1] Univ Rochester, Mech Engn Dept, Rochester, NY 14625 USA
[2] Univ Rochester, Lab Laser Energet, Rochester, NY 14625 USA
关键词
D O I
10.1063/5.0178926
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
While kinetic helicity is not Galilean invariant locally, it is known [Moffatt, J. Fluid Mech. 35, 117 (1969)] that its spatial integral quantifies the degree of knottedness of vorticity field lines. Being a topological property of the flow, mean kinetic helicity is Galilean invariant. Here, we provide a direct mathematical proof that kinetic helicity is Galilean invariant when spatially integrated over regions enclosed by vorticity surfaces, i.e., surfaces of zero vorticity flux. We also discuss so-called relative kinetic helicity, which is Galilean invariant when integrated over any region in the flow.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Discrete physics with conservation and Galilean invariance
    Greenspan, D
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 38 (1-2) : 1 - 12
  • [22] EFFECTS OF VIOLATION OF GALILEAN INVARIANCE OF PAIRING
    PYATOV, NI
    GABRAKOV, SI
    SALAMOV, DI
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1977, 26 (02): : 139 - 142
  • [23] RADIATIVE-CAPTURE AND GALILEAN INVARIANCE
    SHAKESHAFT, R
    SPRUCH, L
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (10): : 1258 - 1259
  • [24] HELICITY CONSERVATION AND SCALE INVARIANCE
    CHANDA, R
    LETTERE AL NUOVO CIMENTO, 1972, 3 (03): : 105 - &
  • [25] Computational Eulerian hydrodynamics and Galilean invariance
    Robertson, Brant E.
    Kravtsov, Andrey V.
    Gnedin, Nickolay Y.
    Abel, Tom
    Rudd, Douglas H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 401 (04) : 2463 - 2476
  • [26] Mean field dynamo action in shearing flows - II. Fluctuating kinetic helicity with zero mean
    Jingade, Naveen
    Singh, Nishant K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 508 (04) : 5163 - 5175
  • [28] GALILEAN INVARIANCE, GAUGE-INVARIANCE AND SPIN-DEPENDENT HAMILTONIANS
    CELEGHINI, E
    LUSANNA, L
    SORACE, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 31 (01): : 89 - 99
  • [29] MAGNETIC MONOPOLES, GALILEAN INVARIANCE, AND MAXWELL EQUATIONS
    CRAWFORD, FS
    AMERICAN JOURNAL OF PHYSICS, 1992, 60 (02) : 109 - 114
  • [30] Dual Galilean invariance in a temporally dispersive medium
    Besieris, Ioannis m.
    Saari, Peeter
    OPTICS EXPRESS, 2024, 32 (02) : 2212 - 2222