On Galilean invariance of mean kinetic helicity

被引:0
|
作者
Tehrani, Dina Soltani [1 ]
Aluie, H. [1 ,2 ]
机构
[1] Univ Rochester, Mech Engn Dept, Rochester, NY 14625 USA
[2] Univ Rochester, Lab Laser Energet, Rochester, NY 14625 USA
关键词
D O I
10.1063/5.0178926
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
While kinetic helicity is not Galilean invariant locally, it is known [Moffatt, J. Fluid Mech. 35, 117 (1969)] that its spatial integral quantifies the degree of knottedness of vorticity field lines. Being a topological property of the flow, mean kinetic helicity is Galilean invariant. Here, we provide a direct mathematical proof that kinetic helicity is Galilean invariant when spatially integrated over regions enclosed by vorticity surfaces, i.e., surfaces of zero vorticity flux. We also discuss so-called relative kinetic helicity, which is Galilean invariant when integrated over any region in the flow.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] KINETIC-MODELS WITH DISCRETE VELOCITY DISTRIBUTION AND GALILEAN INVARIANCE
    SERRE, D
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (07): : 803 - 815
  • [2] Galilean invariance of potential energy
    Ginsberg, Edw. S.
    [J]. PHYSICS TEACHER, 2019, 57 (01): : 4 - 4
  • [3] Galilean invariance restoration on the lattice
    Li, Ning
    Elhatisari, Serdar
    Epelbaum, Evgeny
    Lee, Dean
    Lu, Bingnan
    Meissner, Ulf-G
    [J]. PHYSICAL REVIEW C, 2019, 99 (06)
  • [4] Letter: Galilean invariance of Rortex
    Wang, Yiqian
    Gao, Yisheng
    Liu, Chaoqun
    [J]. PHYSICS OF FLUIDS, 2018, 30 (11)
  • [5] On the role of Galilean invariance in KPZ
    Wio, H. S.
    Revelli, J. A.
    Escudero, C.
    Deza, R. R.
    de La Lama, M. S.
    [J]. NON-EQUILIBRIUM STATISTICAL PHYSICS TODAY, 2011, 1332 : 195 - +
  • [6] GALILEAN INVARIANCE IN FOURIER OPTICS
    SETHURAMAN, J
    [J]. APPLIED OPTICS, 1985, 24 (10): : 1546 - 1548
  • [7] APPARATUS FOR DEMONSTRATION OF GALILEAN INVARIANCE
    SCHWAMB, FE
    [J]. AMERICAN JOURNAL OF PHYSICS, 1967, 35 (02) : 160 - &
  • [8] GALILEAN INVARIANCE AND MAGNETIC CHARGE
    STRAZHEV, VI
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1975, 13 (02) : 113 - 123
  • [9] Galilean invariance in Lagrangian mechanics
    Mohallem, J. R.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2015, 83 (10) : 857 - 860
  • [10] GALILEAN INVARIANCE AND THE SCHRODINGER EQUATION
    HAMERMESH, M
    [J]. ANNALS OF PHYSICS, 1960, 9 (04) : 518 - 521