Quadratic forms representing large integers only

被引:1
|
作者
Kim, Mingyu [1 ]
Oh, Byeong-Kweon [2 ,3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Tight universal quadratic forms;
D O I
10.1016/j.jnt.2023.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer n, let T(n) be the set of all integers greater than or equal to n. An integral quadratic form f is called tight T (n)-universal if the set of nonzero integers that are represented by f is exactly T(n). Let t(n) be the smallest possible rank over all tight T (n)-universal quadratic forms. In this article, we find all tight T (n)-universal diagonal quadratic forms. We also prove that t(n) is an element of omega(log2(n)) boolean AND O(root n). Explicit lower and upper bounds for t(n) will be provided for some small integer n. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:422 / 440
页数:19
相关论文
共 50 条