Data integration in causal inference

被引:11
|
作者
Shi, Xu [1 ]
Pan, Ziyang [1 ]
Miao, Wang [2 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Peking Univ, Dept Probabil & Stat, Beijing, Peoples R China
关键词
causal inference; data fusion; data integration; generalizability; transportability; HISTORICAL CONTROL DATA; MENDELIAN RANDOMIZATION; PROPENSITY SCORE; INSTRUMENTAL VARIABLES; CLINICAL-TRIALS; GENERALIZING EVIDENCE; MULTIPLE IMPUTATION; PRIOR DISTRIBUTIONS; VALIDATION DATA; REGRESSION;
D O I
10.1002/wics.1581
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Integrating data from multiple heterogeneous sources has become increasingly popular to achieve a large sample size and diverse study population. This article reviews development in causal inference methods that combines multiple datasets collected by potentially different designs from potentially heterogeneous populations. We summarize recent advances on combining randomized clinical trials with external information from observational studies or historical controls, combining samples when no single sample has all relevant variables with application to two-sample Mendelian randomization, distributed data setting under privacy concerns for comparative effectiveness and safety research using real-world data, Bayesian causal inference, and causal discovery methods. This article is categorized under: Statistical Models > Semiparametric Models Applications of Computational Statistics > Clinical Trials
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Federated causal inference in heterogeneous observational data
    Xiong, Ruoxuan
    Koenecke, Allison
    Powell, Michael
    Shen, Zhu
    Vogelstein, Joshua T.
    Athey, Susan
    STATISTICS IN MEDICINE, 2023, 42 (24) : 4418 - 4439
  • [22] Drawing causal inference from Big Data
    Shiffrin, Richard M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (27) : 7308 - 7309
  • [23] CAUSAL INFERENCE FROM MESSY DATA - COMMENT
    DAWID, AP
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (385) : 22 - 24
  • [24] A causal inference perspective on the analysis of compositional data
    Arnold, Kellyn F.
    Berrie, Laurie
    Tennant, Peter W. G.
    Gilthorpe, Mark S.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (04) : 1307 - 1313
  • [25] Causal direction inference for air pollutants data
    Zhang, Yulai
    Cen, Yuefeng
    Luo, Guiming
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 68 : 404 - 411
  • [26] Bayesian nonparametric for causal inference and missing data
    Chen, Li-Pang
    BIOMETRICS, 2024, 80 (01)
  • [27] Causal inference on neuroimaging data with Mendelian randomisation
    Taschler, Bernd
    Smith, Stephen M.
    Nichols, Thomas E.
    NEUROIMAGE, 2022, 258
  • [28] Causal inference in longitudinal data with applications in demography
    Ghilagaber, G
    CONTROLLED CLINICAL TRIALS, 2003, 24 : 63S - 64S
  • [29] Causal inference and the data-fusion problem
    Bareinboim, Elias
    Pearl, Judea
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (27) : 7345 - 7352
  • [30] Causal Inference for Heterogeneous Data and Information Theory
    Hlavackova-Schindler, Katerina
    ENTROPY, 2023, 25 (06)