Curcumin/Carrier Coprecipitation by Supercritical Antisolvent Route

被引:1
|
作者
Mottola, Stefania [1 ,2 ]
De Marco, Iolanda [1 ,2 ]
机构
[1] Univ Salerno, Dept Ind Engn, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
[2] Univ Salerno, Res Ctr Biomat BIONAM, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
关键词
inclusion complexes; coprecipitated microparticles; beta-cyclodextrin; SAS precipitation; fast release; supercritical CO2; BREAST-CANCER; MICROPARTICLES; COMPLEXES; CYCLODEXTRINS; CO2;
D O I
10.3390/pharmaceutics16030352
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In this work, polyvinylpyrrolidone (PVP)- and beta-cyclodextrin (beta-CD)-based composite powders containing curcumin (CURC) were obtained through the supercritical antisolvent (SAS) technique. Pressure, total concentration of CURC/carrier in dimethylsulfoxide, and CURC/carrier ratio effects on the morphology and size of the precipitated powders were investigated. Using PVP as the carrier, spherical particles with a mean diameter of 1.72 mu m were obtained at 12.0 MPa, 20 mg/mL, and a CURC/PVP molar ratio equal to 1/2 mol/mol; using beta-CD as the carrier, the optimal operating conditions were 9.0 MPa and 200 mg/mL; well-defined micrometric particles with mean diameters equal to 2.98 and 3.69 mu m were obtained at molar ratios of 1/2 and 1/1 mol/mol, respectively. FT-IR spectra of CURC/ beta-CD inclusion complexes and coprecipitated CURC/PVP powders revealed the presence of some peaks of the active compounds. The stoichiometry of the complexes evaluated through the Job method revealed that beta-CD formed inclusion complexes with CURC at a molar ratio equal to 1/1. Dissolution profiles revealed that in comparison with the curve of the pure ingredient, the SAS-processed powders obtained using both PVP and beta-CD have an improved release rate.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] SUPERCRITICAL ANTISOLVENT METHOD FOR RECRYSTALLIZATION OF HMX
    Thakur, Anupama
    Taniya
    Soni, Pramod
    Kumar, Mahesh
    Deshwal, Seema
    CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA, 2022, 43 (02): : 165 - 170
  • [32] Supercritical antisolvent precipitation of microparticles of quercetin
    Liu, XW
    Li, ZY
    Han, B
    Yuan, TL
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2005, 13 (01) : 128 - 130
  • [33] Supercritical antisolvent precipitation of PHBV microparticles
    Costa, Mariana Sousa
    Duarte, Ana Rita C.
    Cardoso, M. Margarida
    Duarte, Catarina M. M.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2007, 328 (01) : 72 - 77
  • [34] Supercritical antisolvent precipitation of salbutamol microparticles
    Reverchon, E
    Della Porta, G
    Pallado, P
    POWDER TECHNOLOGY, 2001, 114 (1-3) : 17 - 22
  • [35] Didanosine Polymorphism in a Supercritical Antisolvent Process
    Bettini, R.
    Menabeni, R.
    Tozzi, R.
    Pranzo, M. B.
    Pasquali, I.
    Chierotti, M. R.
    Gobetto, R.
    Pellegrino, L.
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2010, 99 (04) : 1855 - 1870
  • [36] Supercritical Antisolvent Precipitation of Microparticles of Quercetin
    刘学武
    李志义
    韩冰
    苑塔亮
    Chinese Journal of Chemical Engineering, 2005, (01) : 134 - 136
  • [37] Supercritical antisolvent fractionation of propolis tincture
    Catchpole, OJ
    Grey, JB
    Mitchell, KA
    Lan, JS
    JOURNAL OF SUPERCRITICAL FLUIDS, 2004, 29 (1-2): : 97 - 106
  • [38] Role of hydrodynamics in supercritical antisolvent processes
    Petit-Gas, T.
    Boutin, O.
    Raspo, I.
    Badens, E.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2009, 51 (02): : 248 - 255
  • [39] Supercritical antisolvent micronization of some biopolymers
    Reverchon, E
    Della Porta, G
    De Rosa, I
    Subra, P
    Letourneur, D
    JOURNAL OF SUPERCRITICAL FLUIDS, 2000, 18 (03): : 239 - 245
  • [40] Supercritical Antisolvent Precipitation of Ethyl Cellulose
    Montes, A.
    Gordillo, M. D.
    Schindhelm, S.
    Pereyra, C.
    Martinez De La Ossa, E. J.
    PARTICULATE SCIENCE AND TECHNOLOGY, 2012, 30 (05) : 424 - 430