Short-term solar radiation forecast using total sky imager via transfer learning

被引:7
|
作者
Manandhar, Prajowal [1 ]
Temimi, Marouane [2 ]
Aung, Zeyar [3 ]
机构
[1] Dubai Elect & Water Author, Res & Dev Ctr, Dubai, U Arab Emirates
[2] Stevens Inst Technol, Dept Civil Environm & Ocean Engn CEOE, Hoboken, NJ USA
[3] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates
关键词
Energy; Solar radiation; Sky imager; Deep transfer learning; Forecasting;
D O I
10.1016/j.egyr.2022.11.087
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ground-based sky cameras, which capture hemispherical images, have been extensively used for localized monitoring of clouds. This paper proposes a short-term forecasting approach based on transfer learning using Total Sky-Imager (TSI) images of the Southern Great Plains (SGP) site obtained from the Atmospheric Radiation Measurement (ARM) dataset. An accurate estimation of solar irradiance using TSI is key for short-term solar energy generation forecasting and optimal energy consumption planning. We make use of deep neural network architectures such as AlexNet and ResNet-101 to extract the underlying deep convolution features from TSI images and then train using an ensemble learning approach to model and forecast solar radiation. We demonstrate the performance of the proposed approach by showcasing the best and worst cases. Thus, the transfer learning approach significantly reduces the time and resources required for modeling solar radiation. We outperform with reference to another state-of-art technique for solar modeling using TSI images at different forecast lead times. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:819 / 828
页数:10
相关论文
共 50 条
  • [31] All sky imaging-based short-term solar irradiance forecasting with Long Short-Term networks
    Hendrikx, N. Y.
    Barhmi, K.
    Visser, L. R.
    de Bruin, T. A.
    Po, M.
    Salah, A. A.
    van Sark, W. G. J. H. M.
    [J]. SOLAR ENERGY, 2024, 272
  • [32] Short-Term Demand Forecast Using Fourier Series
    Cruz, Laura M.
    Alvarez, David L.
    Rivera, Sergio R.
    Herrera, Fernando A.
    [J]. 2019 IEEE WORKSHOP ON POWER ELECTRONICS AND POWER QUALITY APPLICATIONS (PEPQA), 2019,
  • [33] A Deep Learning Model to Forecast Solar Irradiance Using a Sky Camera
    Rajagukguk, Rial A.
    Kamil, Raihan
    Lee, Hyun-Jin
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [34] Probabilistic Short-Term Wind Power Forecast Using Componential Sparse Bayesian Learning
    Yang, Ming
    Fan, Shu
    Lee, Wei-Jen
    [J]. 2012 IEEE/IAS 48TH INDUSTRIAL & COMMERCIAL POWER SYSTEMS TECHNICAL CONFERENCE (I&CPS), 2012,
  • [35] Probabilistic Short-Term Wind Power Forecast Using Componential Sparse Bayesian Learning
    Yang, Ming
    Fan, Shu
    Lee, Wei-Jen
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2013, 49 (06) : 2783 - 2792
  • [36] Short-term atrial fibrillation onset forecast using geometrical features with machine learning
    Gregoire, J. M.
    Gilon, C.
    Sirbu, A.
    Bersini, H.
    Carlier, S.
    [J]. ACTA CARDIOLOGICA, 2022, 77 : 8 - 8
  • [37] Development of a sky imaging system for short-term solar power forecasting
    Urquhart, B.
    Kurtz, B.
    Dahlin, E.
    Ghonima, M.
    Shields, J. E.
    Kleissl, J.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (02) : 875 - 890
  • [38] Economic Dispatch for Power System with Short-Term Solar Power Forecast
    Espinosa-Juarez, Elisa
    Luis Solano-Gallegos, Jorge
    Ornelas-Tellez, Fernando
    [J]. 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 499 - 504
  • [39] Short-term solar irradiation forecast based on LSTM neural network
    Zhao S.
    Shang Y.
    Yang Y.
    Li Y.
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (03): : 383 - 388
  • [40] Very Short-Term Solar PV Generation Forecast Using SARIMA Model: A Case Study
    Kushwaha, Vishal
    Pindoriya, Naran M.
    [J]. 2017 7TH INTERNATIONAL CONFERENCE ON POWER SYSTEMS (ICPS), 2017, : 430 - 435