Promotion of Ilmenite Blending on the Antisulfur Performance of the Lithium-Silicon-Powder-Derived Low-Temperature NH3-SCR Catalyst

被引:4
|
作者
Wang, Runqing [1 ]
Pu, Yijuan [2 ]
Yang, Lin [3 ,4 ]
Yao, Lu [1 ,3 ,4 ]
Dai, Zhongde [3 ,4 ]
Jia, Charles Q. [5 ]
Jiang, Wenju [3 ,4 ]
Wang, Bangda [3 ,4 ]
机构
[1] Sichuan Univ, Coll Architecture & Environm, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Coll Biomass Sci & Engn, Chengdu 610065, Peoples R China
[3] Sichuan Univ, Coll Carbon Neutral Future Technol, Chengdu 610065, Peoples R China
[4] Sichuan Univ, Natl Engn Res Ctr Flue Gas Desulfurizat, Chengdu 610065, Peoples R China
[5] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
基金
中国博士后科学基金;
关键词
HIGH SO2 TOLERANCE; REDUCTION; NH3; NOX; SCR; OXIDES; RESISTANCE; PHOSPHATE; OXIDATION; REMOVAL;
D O I
10.1021/acs.energyfuels.3c03785
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-silicon-powder waste, combined with ferromanganese ore (MnFe/Z), shows great promise as a cost-effective low-temperature NH3-SCR catalyst for NOx emission control. However, the MnFe/Z catalyst's low sulfur tolerance limits its applications. A natural ilmenite (NI)-doped catalyst (NIx-MnFe/Z) was carefully studied and optimized to address this deficiency. The results revealed that natural ilmenite doping enhanced MnFe/Z's antisulfur performance without negatively affecting catalytic activity in the low-temperature range (125-200 degrees C). The optimized NI3-MnFe/Z had the best catalytic activity, maintaining 96.5% NO conversion after 6 h under 50 ppm of SO2 at 175 degrees C. The introduced NI suppressed the electron transfer from Mn4+ and Fe3+ to SO2 and reduced sulfate formation, effectively protecting the active sites from SO2 poisoning. NI addition protected the redox properties of Mn and Fe and the acidity of the catalyst; the NI3-MnFe/Z catalyst broke the SO2 poisoning obstacles in low-temperature NH3-SCR toward future application for efficient NO elimination from industrial flue gas.
引用
收藏
页码:19747 / 19757
页数:11
相关论文
共 50 条
  • [21] Effect of Nb-doping on the MnFeOx catalyst for NH3-SCR reaction at low-temperature
    Pei, Zhenzhao
    Zhao, Haiyang
    Wang, Haipeng
    Fu, Zhuyue
    Yang, Kanghua
    Mao, Kang
    Liu, Yan
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2024, 99 (08) : 1889 - 1896
  • [22] Novel MnOx-CeO2 nanosphere catalyst for low-temperature NH3-SCR
    Li, Lulu
    Sun, Bowen
    Sun, Jingfang
    Yu, Shuohan
    Ge, Chengyan
    Tang, Changjin
    Dong, Lin
    CATALYSIS COMMUNICATIONS, 2017, 100 : 98 - 102
  • [23] Application of manganese-containing soil as novel catalyst for low-temperature NH3-SCR of NO
    Wu, Hongli
    He, Minyu
    Liu, Weizao
    Jiang, Lijun
    Cao, Jun
    Yang, Chen
    Yang, Jie
    Peng, Jing
    Liu, Yi
    Liu, Qingcai
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (04):
  • [24] Ce enhanced low-temperature performance of Mn modified Cu-Beta zeolite catalyst for NH3-SCR
    Guo, Xin
    Ding, Zhiyong
    Kang, Na
    Yang, Liu
    Wang, Yuanjiang
    Zhang, Cheng
    Li, Zhaoqiang
    Zhang, Tiantian
    Wang, Yan
    Wang, Yu
    Qu, Hao
    FUEL, 2024, 361
  • [25] Study on the Performance of the Zr-Modified Cu-SSZ-13 Catalyst for Low-Temperature NH3-SCR
    Du, Huiyong
    Yang, Shuo
    Li, Ke
    Shen, Qian
    Li, Min
    Wang, Xuetao
    Fan, Chenyang
    ACS OMEGA, 2022, 7 (49): : 45144 - 45152
  • [26] Mesoporous Mn-Ti amorphous oxides: a robust low-temperature NH3-SCR catalyst
    Yang, Yanran
    Wang, Minghong
    Tao, Zuliang
    Liu, Qing
    Fei, Zhaoyang
    Chen, Xian
    Zhang, Zhuxiu
    Tang, Jihai
    Cui, Mifen
    Qiao, Xu
    CATALYSIS SCIENCE & TECHNOLOGY, 2018, 8 (24) : 6396 - 6406
  • [27] Promoting effect of Ce-modified phosphomolybdenum heteropolyacid catalyst on low-temperature NH3-SCR
    Jia, Yong
    Wen, Tao
    Guo, Lina
    Meng, Fanyu
    Long, Hongming
    Zhang, Shule
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 708
  • [28] Unveiling the inductive strategy of different precipitants on MnFeOx catalyst for low-temperature NH3-SCR reaction
    Chen, Zhichao
    Ren, Shan
    Xing, Xiangdong
    Li, Xiaodi
    Chen, Lin
    Wang, Mingming
    FUEL, 2023, 335
  • [29] A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO
    Li, Shihui
    Huang, Bichun
    Yu, Chenglong
    CATALYSIS COMMUNICATIONS, 2017, 98 : 47 - 51
  • [30] Tourmaline-Modified FeMnTiOx Catalysts for Improved Low-Temperature NH3-SCR Performance
    Wang, Fei
    Xie, Zhibo
    Liang, Jinsheng
    Fang, Baizeng
    Piao, Yu'ang
    Hao, Ming
    Wang, Zishuo
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (12) : 6989 - 6996