Plant-associated bacteria of Syringa vulgaris L. in an urban environment

被引:0
|
作者
Tsavkelova, Elena A. [1 ]
Churikova, Olga A. [2 ]
Volynchikova, Elena A. [1 ,3 ]
Sapun, Sofia S. [1 ,4 ]
Leontieva, Maria R. [1 ]
Speranskaya, Anna S. [5 ]
Konorov, Evgenii A. [6 ]
Krinitsina, Anastasia A. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Biol, Dept Microbiol, 1-12 Lenins Hills, Moscow 119234, Russia
[2] Moscow MV Lomonosov State Univ, Fac Biol, Dept Higher Plants, 1-12 Lenins Hills, Moscow 119234, Russia
[3] Korea Univ, Dept Plant Biotechnol, Seoul 02841, South Korea
[4] Russian Acad Sci, Fed Res Ctr Fundamentals Biotechnol, Fed State Inst, Leninsky Prospect 33,Build 2, Moscow 119071, Russia
[5] Fed Serv ConsumersRights Protect & Human Well Bein, Sci Res Inst Syst Biol & Med, Moscow 117246, Russia
[6] Russian Acad Sci, Gorbatov Fed Res Ctr Food Syst, Moscow 109316, Russia
关键词
Lilacs; Bud-associated bacteria; Endophytes; Plant-microbial interactions; Plant growth-promoting bacteria (PGPB); Auxin (IAA); GROWTH-PROMOTING BACTERIA; PSEUDOMONAS-SYRINGAE; IN-VITRO; ENDOPHYTES; STRAINS; IDENTIFICATION; COLONIZATION; VERBASCOSIDE; FLUORESCENS; BIOCONTROL;
D O I
10.1007/s11104-023-06417-5
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Purpose Beneficial bacteria contribute significantly to host-plant adaptive capacities. Lilacs are common shrubs of urban areas in a northern climate. Their buds are the primary material for the Syringa aseptic micropropagation using a Murashige and Skoog medium (MS). As opposed to considering bud-associated bacteria as just contaminants, the search for plant growth-promoting bacteria (PGPB) provides a potential tool for better lilac-microbial co-cultivation.Methods In total, six cultivars of Siringa vulgaris were studied for the bacterial diversity of their roots and buds. By scanning electron microscopy, the localization of microorganisms was studied. The composition of bacterial communities was analyzed by Illumina Miseq new generation sequencing (NGS). Culturable bacteria of rhizoplane and surface-sterilized buds were isolated and compared. Indole-3-acetic acid (IAA) production under different cultivation conditions was studied colorimetrically among bud-associated bacteria capable of growing in MS medium.Results Pseudomonadota and Bacillota phyla dominated among cultivable bacteria; Proteobacteria, Actinobacteria, Firmicutes, Chloroflexi, Acidobacteriota, Verrucomicrobiota, Bacteroidota, and Crenarchaeota were detected by NGS. The endophytic communities differed at the genus level with dominating non-pathogenic Curtobacterium and Pseudomonas. Attached bacteria on the non-sterilized and surface-sterilized buds were observed. Bud-associated Methyllobacterium and Paenibacillus showed tryptophan-dependent biosynthesis of auxins. It strongly depended on the medium, with the lower IAA production in MS.Conclusion Lilacs maintain a wide diversity of root-associated bacteria with a number of beneficial strains. The endophytic community is limited and varies among the cultivars. Bud-associated PGPB may survive during sterilization and reveal their growth-promoting activity by producing auxins, though optimization of plant-microbial interactions is needed.
引用
收藏
页码:585 / 610
页数:26
相关论文
共 50 条
  • [31] SYNTHESIS AND REGULATION OF ALGINATE PRODUCTION BY PLANT-ASSOCIATED BACTERIA
    FETT, WF
    OSMAN, SF
    WIJEY, C
    SINGH, S
    KOEHLER, B
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 204 : 59 - CARB
  • [32] Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria
    Gavira, Jose A.
    Rico-Jimenez, Miriam
    Ortega, Alvaro
    Petukhova, Natalia, V
    Bug, Dmitrii S.
    Castellvi, Albert
    Porozov, Yuri B.
    Zhulin, Igor B.
    Krell, Tino
    Matilla, Miguel A.
    MBIO, 2023, 14 (01):
  • [33] Type VI secretion systems in plant-associated bacteria
    Bernal, Patricia
    Llamas, Maria A.
    Filloux, Alain
    ENVIRONMENTAL MICROBIOLOGY, 2018, 20 (01) : 1 - 15
  • [34] Plant-associated bacteria mitigate drought stress in soybean
    Martins, Samuel Julio
    Rocha, Geisiane Alves
    de Melo, Hyrandir Cabral
    Georg, Raphaela de Castro
    Ulhoa, Cirano Jose
    Dianese, Erico de Campos
    Oshiquiri, Leticia Harumi
    da Cunha, Marcos Gomes
    da Rocha, Mara Rubia
    de Araujo, Leila Garces
    Vaz, Karina Santana
    Dunlap, Christopher A.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (14) : 13676 - 13686
  • [35] Halophilic Plant-Associated Bacteria with Plant-Growth-Promoting Potential
    Meinzer, McKay
    Ahmad, Niaz
    Nielsen, Brent L.
    MICROORGANISMS, 2023, 11 (12)
  • [36] The Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L.
    Estendorfer, Jennifer
    Stempfhuber, Barbara
    Haury, Paula
    Vestergaard, Gisle
    Rillig, Matthias C.
    Joshi, Jasmin
    Schroeder, Peter
    Schloter, Michael
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [37] Metabolism of Aldoximes and Nitriles in Plant-Associated Bacteria and Its Potential in Plant-Bacteria Interactions
    Radisch, Robert
    Patek, Miroslav
    Kristkova, Barbora
    Winkler, Margit
    Kren, Vladimir
    Martinkova, Ludmila
    MICROORGANISMS, 2022, 10 (03)
  • [38] Diurnal and seasonal changes in the intensity of photosynthesis in stems of lilac (Syringa vulgaris L.)
    Pilarski, J
    ACTA PHYSIOLOGIAE PLANTARUM, 2002, 24 (01) : 29 - 36
  • [39] Starvation and nonculturable state in plant-associated lactic acid bacteria
    Muller, T
    Seyfarth, W
    MICROBIOLOGICAL RESEARCH, 1997, 152 (01) : 39 - 43
  • [40] Chemical Composition of Tissues of Syringa vulgaris L. and Soil Features in Abandoned Cemeteries
    Rahmonov, Oimahmad
    Majgier, Leszek
    Rahmonov, Malgorzata
    SOIL SYSTEMS, 2023, 7 (01)