Compact automatic controlled internal combustion engine cogeneration system based on natural gas with waste heat recovery from the combustion process

被引:4
|
作者
Pawlenka, Tomas [1 ]
Juranek, Martin [1 ]
Klaus, Pavel [1 ]
Beseda, Marek [1 ]
Buran, Michal [1 ]
Suchanek, Miroslav [1 ]
Sehnoutka, Petr [1 ]
Kulhanek, Jiri [2 ]
机构
[1] VSB Tech Univ Ostrava, Fac Mat Sci & Technol, Dept Mat & Technol Vehicles, Ostrava 708, Czech Republic
[2] VSB Tech Univ Ostrava, Fac Mech Engn, Dept Control Syst & Instrumentat, Ostrava 70800, Czech Republic
关键词
Cogeneration system; Combustion engine; Energy storage; Waste heat recovery; Electric generator; Natural gas; ENVIRONMENTAL ASSESSMENT; PERFORMANCE ASSESSMENT; ENERGY-STORAGE; POWER-SYSTEMS; CHP SYSTEM; GENERATOR; VEHICLES; UNIT;
D O I
10.1016/j.tsep.2023.102042
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper is related to cogeneration, or combined heat and power systems (CHP) and its development, which is based on an already used and low-cost internal combustion engine ICE with a fuel system redesigned for the injection of natural gas. The main role of this system is heating and electricity production and is mainly designed for small or medium-sized households or family houses. Heat is recovered from the engine's cooling circuit and its exhaust system using a special exhaust heat exchanger. The entire process is automatically controlled to keep the output heat transfer fluid at the required temperature and to keep the engine temperature within the operating range. This fluid is then used for heating the building or domestic hot water DHW. As a power generation unit - PGU, a three-phase asynchronous motor with the power of 12.5 kW was used. The theoretical charging current can be around 400 A. Part of the development is the design of control loops, which are implemented in the main control system. This control system can be connected to a smart home energy management system SHEMS and is designed for fully automatic operation. The functionality of all operating states and conditions was supported by testing and measurements. The paper includes an analysis of the energy balance from testing and measurements. The maximum overall efficiency of the CHP can reach up to 87% in operation mode, with a heating power output of 15 kW and an electrical power output of 4 kW.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Brayton cycle for internal combustion engine exhaust gas waste heat recovery
    Galindo, J.
    Serrano, J. R.
    Dolz, V.
    Kleut, P.
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (06) : 1 - 9
  • [2] Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine
    Valencia Ochoa, Guillermo
    Cardenas Gutierrez, Javier
    Duarte Forero, Jorge
    RESOURCES-BASEL, 2020, 9 (01):
  • [3] The application of the compact heat exchangers for the latent heat recovery from the combustion waste gas
    Ohashi, Y
    Kawamoto, K
    Nagane, K
    COMPACT HEAT EXCHANGERS FOR THE PROCESS INDUSTRIES, 1997, : 151 - 159
  • [4] Summary of Turbocharging as a Waste Heat Recovery System for a Variable Altitude Internal Combustion Engine
    Peng, Qikai
    Liu, Ruilin
    Zhou, Guangmeng
    Zhao, Xumin
    Dong, Surong
    Zhang, Zhongjie
    Zhang, Han
    ACS OMEGA, 2023, 8 (31): : 27932 - 27952
  • [5] Review of thermoelectric generation for internal combustion engine waste heat recovery
    Burnete, Nicolae Vlad
    Mariasiu, Florin
    Depcik, Christopher
    Barabas, Istvan
    Moldovanu, Dan
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2022, 91
  • [6] Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
    Jacobs, Timothy J.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2015, 137 (04):
  • [7] Internal combustion engine waste heat recovery by a thermoelectric generator inserted at combustion chamber walls
    Al-Nimr, Moh'd A.
    Alajlouni, Ahmed A.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (15) : 4853 - 4865
  • [8] Heat transfer of a Stirling engine for waste heat recovery application from internal combustion engines
    Catapano, Francesco
    Perozziello, Carmela
    Vaglieco, Bianca Maria
    APPLIED THERMAL ENGINEERING, 2021, 198
  • [9] Study on temperature profile of internal combustion engine exhaust gas for implementing waste heat recovery
    Herawan, Safarudin Gazali
    Talib, Kamarulhelmy
    Putra, Azma
    Shamsudin, Shamsul Anuar
    Ismail, Mohd Farid
    PROCEEDINGS OF INNOVATIVE RESEARCH AND INDUSTRIAL DIALOGUE 2018 (IRID'18), 2019, : 110 - 111
  • [10] Challenges and opportunities of Rankine cycle for waste heat recovery from internal combustion engine
    Tian, Hua
    Liu, Peng
    Shu, Gequn
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2021, 84