Convergence of the Navier-Stokes-Maxwell system to the Euler-Maxwell system near constant equilibrium

被引:0
|
作者
Li, Zongguang [1 ]
Yang, Dongcheng [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
来源
关键词
Two-fluid model; Navier-Stokes-Maxwell system; Navier-Stokes-Poisson system; Euler-Maxwell system; Vanishing viscosity limit; ISENTROPIC GAS-DYNAMICS; POISSON SYSTEM; GLOBAL-SOLUTIONS; EXISTENCE; DECAY; STABILITY; EQUATIONS; BEHAVIOR; LIMIT;
D O I
10.1007/s00033-023-02000-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to provide a justification of the vanishing viscosity limit of the compressible Navier-Stokes-Maxwell system in the whole space. With suitable initial data, we rigorously prove that there exists a sequence of unique smooth solutions of the Navier-Stokes-Maxwell system which converges to the given smooth solution of the Euler-Maxwell system near constant equilibrium when the viscosity coefficients tend to zero. Moreover, a uniform convergence rate is obtained in terms of the viscosity coefficients. As a byproduct, a similar result for the compressible Navier-Stokes-Poisson system is also obtained.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Convergence of the Navier–Stokes–Maxwell system to the Euler–Maxwell system near constant equilibrium
    Zongguang Li
    Dongcheng Yang
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [2] REGULARITY RESULTS FOR THE NAVIER-STOKES-MAXWELL SYSTEM
    Wen, Zhihong
    Ye, Zhuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (02) : 339 - 358
  • [3] Global convergence in non-relativistic limits for Euler-Maxwell system near non-constant equilibrium
    Li, Yachun
    Wang, Chenmu
    Zhao, Liang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 377 : 297 - 331
  • [4] Stability of Non-constant Equilibrium Solutions for the Full Compressible Navier-Stokes-Maxwell System
    Feng, Yue-Hong
    Li, Xin
    Wang, Shu
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (01)
  • [5] Uniform regularity of the isentropic Navier-Stokes-Maxwell system
    Xiao, Qingkun
    Sun, Jianzhu
    Tang, Tong
    AIMS MATHEMATICS, 2022, 7 (04): : 6694 - 6701
  • [6] Extended Regularity Criteria for the Navier-Stokes-Maxwell system
    Zhang, Zujin
    Pan, Jian
    Qiu, Shulin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2039 - 2046
  • [7] GLOBAL SMALL SOLUTIONS FOR THE NAVIER-STOKES-MAXWELL SYSTEM
    Ibrahim, Slim
    Keraani, Sahbi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (05) : 2275 - 2295
  • [8] On the hydrostatic approximation of Navier-Stokes-Maxwell system with Gevrey data
    Liu, Ning
    Paicu, Marius
    Zhang, Ping
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 187 : 1 - 44
  • [9] Global Regularity for the Navier-Stokes-Maxwell System with Fractional Diffusion
    Zaihong Jiang
    Shuyun Zhang
    Mingxuan Zhu
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [10] A Derivation of the Magnetohydrodynamic System from Navier-Stokes-Maxwell Systems
    Arsenio, Diogo
    Ibrahim, Slim
    Masmoudi, Nader
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 216 (03) : 767 - 812