Computing the zeros of the Szego?kernel for doubly connected regions using conformal mapping

被引:0
|
作者
Gafai, Nuraddeen S. [1 ,2 ]
Murid, Ali H. M. [2 ]
Naqos, Samir [2 ]
Wahid, Nur H. A. A. [3 ]
机构
[1] Umaru Musa Yaradua Univ Katsina, Dept Math & Stat, Katsina, Nigeria
[2] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Utm Johor Bahru 81310, Johor, Malaysia
[3] Univ Teknol MARA, Coll Comp Informat & Media, Sch Math Sci, Shah Alam 40450, Selangor, Malaysia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 05期
关键词
Szego?kernel; conformal mapping; doubly connected regions; generalized Neumann; kernel; integral equation; BOUNDARY INTEGRAL-EQUATIONS; RIEMANN-HILBERT PROBLEM; AHLFORS MAP; NYSTROM METHOD; SZEGO KERNEL; DOMAINS;
D O I
10.3934/math.2023607
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An explicit formula for the zero of the Szego center dot kernel for an annulus region is well-known. There exists a transformation formula for the Szego center dot kernel from a doubly connected region onto an annulus. Based on conformal mapping, we derive an analytical formula for the zeros of the Szego center dot kernel for a general doubly connected region with smooth boundaries. Special cases are the explicit formulas for the zeros of the Szego center dot kernel for doubly connected regions bounded by circles, limacons, ellipses, and ovals of Cassini. For a general doubly connected region with smooth boundaries, the zero of the Szego center dot kernel must be computed numerically. This paper describes the application of conformal mapping via integral equation with the generalized Neumann kernel for computing the zeros of the Szego center dot kernel for smooth doubly connected regions. Some numerical examples and comparisons are also presented. It is shown that the conformal mapping approach also yields good accuracy for a narrow region or region with boundaries that are close to each other.
引用
收藏
页码:12040 / 12061
页数:22
相关论文
共 50 条
  • [21] RAPID METHODS FOR THE CONFORMAL MAPPING OF MULTIPLY CONNECTED REGIONS
    MAYO, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (1-2) : 143 - 153
  • [22] THEORY OF CONFORMAL AND QUASICONFORMAL MAPPING OF MULTIPLY CONNECTED REGIONS
    EROKHIN, V
    DOKLADY AKADEMII NAUK SSSR, 1959, 127 (06): : 1155 - 1157
  • [23] Computing Green's Function on Unbounded Doubly Connected Regions via Integral Equation with the Generalized Neumann Kernel
    Aspon, Siti Zulaiha
    Murid, Ali Hassan Mohamed
    Rahmat, Hamisan
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 215 - 220
  • [24] Integral Equation Approach for Computing Green's Function on Doubly Connected Regions via the Generalized Neumann Kernel
    Aspon, Siti Zulaiha
    Murid, Ali Hassan Mohamed
    Nasser, Mohamed M. S.
    Rahmat, Hamisan
    JURNAL TEKNOLOGI, 2014, 71 (01):
  • [25] Conformal Mapping onto a Doubly Connected Circular Arc Polygonal Domain
    Bauer, Ulrich
    Lauf, Wolfgang
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (01) : 77 - 96
  • [26] A New Method for Numerical Conformal Mapping of Doubly-connected Domain
    Lai, Fuming
    Lu, Yibin
    Wang, Yingzi
    Wu, Dean
    PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING, 2016, 32 : 1560 - 1565
  • [27] Conformal Mapping onto a Doubly Connected Circular Arc Polygonal Domain
    Ulrich Bauer
    Wolfgang Lauf
    Computational Methods and Function Theory, 2019, 19 : 77 - 96
  • [28] Conformal mapping of doubly connected domains: an application to the modelling of an electrostatic micromotor
    Costamagna, E.
    Di Barba, P.
    Savini, A.
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2009, 3 (05) : 334 - 342
  • [29] MODERN LOOK AT CONFORMAL MAPPING INCLUDING MULTIPLY CONNECTED REGIONS
    IVES, DC
    AIAA JOURNAL, 1976, 14 (08) : 1006 - 1011
  • [30] CONFORMAL MAPPING OF MULTIPLY CONNECTED DOMAINS EXTERIOR TO THIN REGIONS
    HOMENTCOVSCHI, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1982, 33 (04): : 503 - 512