A novel magnetic Fe3O4 carbon-shell (MFC) functionalization with lanthanum as an adsorbent for phosphate removal from aqueous solution

被引:3
|
作者
Dermawan, D. [1 ,2 ]
Hieu, V. T. [1 ,4 ]
Wang, Y. -F [1 ,3 ]
You, S. -J [1 ,3 ]
机构
[1] Chung Yuan Christian Univ, Coll Engn, Dept Environm Engn, 200 Chung Pei Rd, Zhongli 320, Taiwan
[2] Chung Yuan Christian Univ, Dept Civil Engn, Chungli 320, Taiwan
[3] Chung Yuan Christian Univ, Ctr Environm Risk Management, Chungli 32023, Taiwan
[4] Vietnam Russian Trop Ctr, Dept Chem & Environm, Hanoi, Vietnam
关键词
Phosphate; Magnetic Fe3O4 carbon-shell; Lanthanum; MFC@La(OH)(3); Novel adsorbent; Adsorption; WASTE-WATER; ADSORPTION BEHAVIOR; PHOSPHORUS REMOVAL; NANOPARTICLES; OXIDE;
D O I
10.1007/s13762-022-04245-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Magnetic Fe3O4 carbon-shell (MFC) functionalization with lanthanum (MFC@La(OH)(3)) was successfully synthesized with various weight ratios between Fe and La utilizing the facile procedure to obtain high adsorption capacity and an easily separable adsorbent from water. FTIR result showed La-OH vibration bond and the residual NO3- anion confirming the La functional group's successful formation on the surface of the outer carbon shell of the magnetite core. Furthermore, the asymmetric stretch vibration of the P-O group within the HPO42- and H2PO4- species of phosphate confirmed the adsorption phosphate on the surface layer of the adsorbent. The MFC@La(OH)(3) 1:2 has the highest BET surface area among the other adsorbents and is selected as the highest adsorbent for phosphate removal. It was discovered that the adsorption capacity increased at pH 4-6, which can be attributed to La(OH)(3) functional group which was protonated (positively charged), thus provoking an electrostatic interaction reaction with the negatively charged phosphate species. The equilibrium data were fit into various adsorption isotherms and found to fit well with the Freundlich model (indicating that novel adsorbent had heterogeneous surface and multilayer adsorption mechanism processes) with a maximum adsorption capacity of 30.85 mg P/g, whereas the adsorption kinetics followed pseudo-second-order kinetics. After adsorption, the magnetic separation was easily achieved, and the adsorbent could be regenerated continuously for five cycles. The current study found that the novel adsorbent has high adsorption capacity, easy to separate and recover, and appropriate for further investigation of large-scale water and wastewater treatment applications.
引用
收藏
页码:3861 / 3874
页数:14
相关论文
共 50 条
  • [41] Effect of Fe3O4 nanoparticles on magnetic xerogel composites for enhanced removal of fluoride and arsenic from aqueous solution
    Khamkure, Sasirot
    Bustos-Terrones, Victoria
    Jakelin Benitez-Avila, Nancy
    Fernanda Cabello-Lugo, Maria
    Gamero-Melo, Procoro
    Esperanza Garrido-Hoyos, Sofia
    Marcos Esparza-Schulz, Juan
    WATER SCIENCE AND ENGINEERING, 2022, 15 (04) : 305 - 317
  • [42] Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres
    Iram, Mahmood
    Guo, Chen
    Guan, Yueping
    Ishfaq, Ahmad
    Liu, Huizhou
    JOURNAL OF HAZARDOUS MATERIALS, 2010, 181 (1-3) : 1039 - 1050
  • [43] Efficient removal of carmoisine dye from aqueous solution using Fe3O4 magnetic nanoparticles modified with asparagine
    Mostashari, Seyedeh Zahra
    Shojaei, Abdollah Fallah
    Tabatabaeian, Khalil
    Kefayati, Hassan
    Shariati, Shahab
    DESALINATION AND WATER TREATMENT, 2021, 229 : 441 - 451
  • [44] Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution
    Panneerselvam, P.
    Morad, Norhashimah
    Tan, Kah Aik
    JOURNAL OF HAZARDOUS MATERIALS, 2011, 186 (01) : 160 - 168
  • [45] Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution
    Qi, Zenglu
    Joshi, Tista Prasai
    Liu, Ruiping
    Liu, Huijuan
    Qu, Jiuhui
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 329 : 193 - 204
  • [46] Fast Removal of Methylene Blue from Aqueous Solution Using Magnetic-Modified Fe3O4 Nanoparticles
    Abkenar, Shiva Dehghan
    Khoobi, Mehdi
    Tarasi, Roghayeh
    Hosseini, Morteza
    Shafiee, Abbas
    Ganjali, Mohammad R.
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2015, 141 (01)
  • [47] Evaluation of phosphate removal capacity of Fe3O4–ZVINPs from aqueous solution: optimization using response surface analysis
    Arun K. Singh
    Kunwar P. Singh
    Research on Chemical Intermediates, 2016, 42 : 7397 - 7415
  • [48] Efficient removal of phosphate from aqueous solution using novel magnetic nanocomposites with Fe3O4@SiO2 core and mesoporous CeO2 shell
    丁鸿
    赵燕凌
    段倩林
    王俊文
    张侃
    丁光月
    谢鲜梅
    丁传敏
    Journal of Rare Earths, 2017, 35 (10) : 984 - 994
  • [49] Efficient removal of phosphate from aqueous solution using novel magnetic nanocomposites with Fe3O4@SiO2 core and mesoporous CeO2 shell
    Ding Hong
    Zhao Yanling
    Duan Qianlin
    Wang Junwen
    Zhang Kan
    Ding Guangyue
    Xie Xianmei
    Ding Chuanmin
    JOURNAL OF RARE EARTHS, 2017, 35 (10) : 984 - 994
  • [50] Effect of green synthesis of Fe3O4 nanomaterial on the removal of cefixime from aqueous solution
    Al-husseiny, Rasha A.
    Kareem, Sabreen L.
    Naje, Ahmed Samir
    Ebrahim, Shahlaa E.
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (15) : 17277 - 17288