EXISTENCE OF RATIONAL PRIMITIVE NORMAL PAIRS OVER FINITE FIELDS

被引:0
|
作者
Sharma, Rajendra Kumar [1 ]
Takshak, Soniya [1 ]
Awasthi, Ambrish [2 ]
Sharma, Hariom [3 ]
机构
[1] Indian Inst Technol, Dept Math, Hauz Khas, New Delhi 110016, India
[2] Def Res & Dev Org, Sci Anal Grp, Metcalfe House, Delhi 110054, India
[3] S S Govt PG Coll, Faridabad 121101, Haryana, India
关键词
Finite Field; Primitive Element; Normal Element; Character; NORMAL BASES; ELEMENTS;
D O I
10.22108/IJGT.2022.133016.1784
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. For a finite field Fqn and a rational function f = f1 condition for the existence of a primitive normal element alpha is an element of Fqn in such a way f(alpha) is also primitive in Fqn , where f(x) is a rational function in Fqn (x) of degree sum m (degree sum of f(x) = f1 (x) f2(x) is defined to be the sum of the degrees of f1(x) and f2(x)). Additionally, for rational functions of degree sum 4, we proved that there are only 37 and 16 exceptional values of (q, n) when q = 2k and q = 3k respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] The coefficients of primitive polynomials over finite fields
    Han, WB
    MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 331 - 340
  • [42] PRIMITIVE POLYNOMIALS OVER FINITE-FIELDS
    HANSEN, T
    MULLEN, GL
    MATHEMATICS OF COMPUTATION, 1992, 59 (200) : 639 - 643
  • [43] SOME PRIMITIVE POLYNOMIALS OVER FINITE FIELDS
    Seunghwan Chang
    June Bok Lee Department of Mathematics
    ActaMathematicaScientia, 2001, (03) : 412 - 416
  • [44] A construction of primitive polynomials over finite fields
    Cardell, Sara D.
    Climent, Joan-Josep
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (12): : 2424 - 2431
  • [45] A characterization of primitive polynomials over finite fields
    Fitzgerald, RW
    FINITE FIELDS AND THEIR APPLICATIONS, 2003, 9 (01) : 117 - 121
  • [46] Inverses of r-primitive k-normal elements over finite fields
    Rani, Mamta
    Sharma, Avnish K.
    Tiwari, Sharwan K.
    Panigrahi, Anupama
    RAMANUJAN JOURNAL, 2024, 63 (03): : 723 - 747
  • [47] Inverses of r-primitive k-normal elements over finite fields
    Mamta Rani
    Avnish K. Sharma
    Sharwan K. Tiwari
    Anupama Panigrahi
    The Ramanujan Journal, 2024, 63 : 723 - 747
  • [48] Pairs of quadratic forms over finite fields
    Pott, Alexander
    Schmidt, Kai-Uwe
    Zhou, Yue
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [49] Completely normal primitive basis generators of finite fields
    Morgan, IH
    Mullen, GL
    UTILITAS MATHEMATICA, 1996, 49 : 21 - 43
  • [50] r-primitive k-normal elements in arithmetic progressions over finite fields
    Aguirre, Josimar J. R.
    Lemos, Abilio
    Neumann, Victor G. L.
    Ribas, Savio
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (01) : 427 - 442