EXISTENCE OF RATIONAL PRIMITIVE NORMAL PAIRS OVER FINITE FIELDS

被引:0
|
作者
Sharma, Rajendra Kumar [1 ]
Takshak, Soniya [1 ]
Awasthi, Ambrish [2 ]
Sharma, Hariom [3 ]
机构
[1] Indian Inst Technol, Dept Math, Hauz Khas, New Delhi 110016, India
[2] Def Res & Dev Org, Sci Anal Grp, Metcalfe House, Delhi 110054, India
[3] S S Govt PG Coll, Faridabad 121101, Haryana, India
关键词
Finite Field; Primitive Element; Normal Element; Character; NORMAL BASES; ELEMENTS;
D O I
10.22108/IJGT.2022.133016.1784
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. For a finite field Fqn and a rational function f = f1 condition for the existence of a primitive normal element alpha is an element of Fqn in such a way f(alpha) is also primitive in Fqn , where f(x) is a rational function in Fqn (x) of degree sum m (degree sum of f(x) = f1 (x) f2(x) is defined to be the sum of the degrees of f1(x) and f2(x)). Additionally, for rational functions of degree sum 4, we proved that there are only 37 and 16 exceptional values of (q, n) when q = 2k and q = 3k respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On the existence of pairs of primitive normal elements over finite fields
    Rani, Mamta
    Sharma, Avnish K.
    Tiwari, Sharwan K.
    Gupta, Indivar
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1032 - 1049
  • [2] On the Existence of Pairs of Primitive and Normal Elements Over Finite Fields
    Carvalho, Cicero
    Guardieiro, Joao Paulo
    Neumann, Victor G. L.
    Tizziotti, Guilherme
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (03): : 677 - 699
  • [3] On the existence of pairs of primitive normal elements over finite fields
    Mamta Rani
    Avnish K. Sharma
    Sharwan K. Tiwari
    Indivar Gupta
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 1032 - 1049
  • [4] On the Existence of Pairs of Primitive and Normal Elements Over Finite Fields
    Cícero Carvalho
    João Paulo Guardieiro
    Victor G. L. Neumann
    Guilherme Tizziotti
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 677 - 699
  • [5] Existence of primitive normal pairs with one prescribed trace over finite fields
    Hariom Sharma
    R. K. Sharma
    Designs, Codes and Cryptography, 2021, 89 : 2841 - 2855
  • [6] Existence of primitive normal pairs with one prescribed trace over finite fields
    Sharma, Hariom
    Sharma, R. K.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (12) : 2841 - 2855
  • [7] On the existence of primitive normal elements of rational form over finite fields of even characteristic
    Hazarika, Himangshu
    Basnet, Dhiren Kumar
    Kapetanakis, Giorgos
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (02) : 357 - 382
  • [8] Existence of primitive pairs with prescribed traces over finite fields
    Sharma, Hariom
    Sharma, R. K.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) : 1773 - 1780
  • [9] Existence of primitive pairs with two prescribed traces over finite fields
    Choudhary, Aakash
    Sharma, R. K.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (14)
  • [10] Primitive normal values of rational functions over finite fields
    Sharma, Avnish K.
    Rani, Mamta
    Tiwari, Sharwan K.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (07)