X-ray image analysis for explosive circuit detection using deep learning algorithms

被引:3
|
作者
Seyfi, Gokhan [1 ]
Yilmaz, Merve [1 ]
Esme, Engin [2 ]
Kiran, Mustafa Servet [1 ]
机构
[1] Konya Tech Univ, Fac Engn & Nat Sci, Dept Comp Engn, Konya, Turkiye
[2] Konya Tech Univ, Fac Engn & Nat Sci, Dept Software Engn, Konya, Turkiye
关键词
Deep learning; X-ray image; Dangerous substance; Classification;
D O I
10.1016/j.asoc.2023.111133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
X-ray imaging technologies find applications across various domains, including medical imaging in health institutions or security in military facilities and public institutions. X-ray images acquired from diverse sources necessitate analysis by either trained human experts or automated systems. In cases where concealed electronic cards potentially pose threats, such as in laptops harboring explosive triggering circuits, conventional analysis methods are challenging to detect, even when scrutinized by skilled. The present investigation is centered on the utilization of deep learning algorithms for the analysis of X-ray images of laptop computers, with the aim of identifying concealed hazardous components. To construct the dataset, some control cards such as Arduino, Raspberry Pi and Bluetooth circuits were hidden inside the 60 distinct laptop computers and were subjected to Xray imaging, yielding a total of 5094 X-ray images. The primary objective of this study is to distinguish laptops based on the presence or absence of concealed electronic cards. To this end, a suite of deep learning models, including EfficientNet, DenseNet, DarkNet19, DarkNet53, Inception, MobileNet, ResNet18, ResNet50, ResNet101, ShuffleNet and Xception were subjected to training, testing, and comparative evaluation. The performance of these models was assessed utilizing a range of metrics, encompassing accuracy, sensitivity, specificity, precision, f-measure, and g-mean. Among the various models examined, the ShuffleNet model emerged as the top-performing one, yielding superior results in terms of accuracy (0.8355), sensitivity (0.8199), specificity (0.8530), precision (0.8490), f-measure (0.8322), and g-mean (0.8352).
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Deep Learning Algorithms for Automatic COVID-19 Detection on Chest X-Ray Images
    Cannata, Sergio
    Paviglianiti, Annunziata
    Pasero, Eros
    Cirrincione, Giansalvo
    Cirrincione, Maurizio
    IEEE ACCESS, 2022, 10 : 119905 - 119913
  • [22] Interpretable Deep Learning for Pneumonia Detection Using Chest X-Ray Images
    Colin, Jovito
    Surantha, Nico
    INFORMATION, 2025, 16 (01)
  • [23] Using X-ray images and deep learning for automated detection of coronavirus disease
    El Asnaoui, Khalid
    Chawki, Youness
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (10): : 3615 - 3626
  • [24] Detection of COVID-19 Using Deep Learning on X-Ray Images
    Alotaibi, Munif
    Alotaibi, Bandar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (03): : 885 - 898
  • [25] Gender Detection from Spine X-ray Images Using Deep Learning
    Xue, Zhiyun
    Rajaraman, Sivaramakrishnan
    Long, Rodney
    Antani, Sameer
    Thoma, George R.
    2018 31ST IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS 2018), 2018, : 54 - 58
  • [26] Automated Bone Cancer Detection Using Deep Learning on X-Ray Images
    Dalai, Sasanka Sekhar
    Sahu, Bharat Jyoti Ranjan
    Rautaray, Jyotirmayee
    Khan, M. Ijaz
    Jabr, Bander A.
    Ali, Yasser A.
    SURGICAL INNOVATION, 2025, 32 (02) : 94 - 108
  • [27] CXR-FL: Deep Learning-Based Chest X-ray Image Analysis Using Federated Learning
    Slazyk, Filip
    Jablecki, Przemyslaw
    Lisowska, Aneta
    Malawski, Maciej
    Plotka, Szymon
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 433 - 440
  • [28] Multimodal Multitask Deep Learning for X-Ray Image Retrieval
    Yu, Yang
    Hu, Peng
    Lin, Jie
    Krishnaswamy, Pavitra
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 : 603 - 613
  • [29] A DEEP LEARNING ENSEMBLE APPROACH FOR X-RAY IMAGE CLASSIFICATION
    Esme, Engin
    Kiran, Mustafa Servet
    KONYA JOURNAL OF ENGINEERING SCIENCES, 2024, 12 (03):
  • [30] Development of Chest X-ray Image Evaluation Software Using the Deep Learning Techniques
    Usui, Kousuke
    Yoshimura, Takaaki
    Ichikawa, Shota
    Sugimori, Hiroyuki
    APPLIED SCIENCES-BASEL, 2023, 13 (11):