Optimal extensions of Lipschitz maps on metric spaces of measurable functions

被引:0
|
作者
Rueda, Pilar [1 ]
Perez, Enrique A. Sanchez [2 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Dr Moliner 50, Valencia 46100, Comunitat Valen, Spain
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Comunitat Valen, Spain
关键词
Lipschitz operator; Optimal domain; Metric space; Factorization; Metric function space; OPTIMAL DOMAINS; OPERATORS; CONVERGENCE;
D O I
10.1016/j.jmaa.2023.127151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a factorization theorem for Lipschitz operators acting on certain subsets of metric spaces of measurable functions and with values on general metric spaces. Our results show how a Lipschitz operator can be extended to a subset of other metric space of measurable functions that satisfies the following optimality condition: it is the biggest metric space, formed by measurable functions, to which the operator can be extended preserving the Lipschitz constant. As an application, we show the coarsest metric that can be given for a metric space in which an order bounded lattice-valued-Lipschitz map is defined. Concrete examples involving the relevant space L0(mu) are given.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Fuzzy Lipschitz maps and fixed point theorems in fuzzy metric spaces
    Yun, Gabjin
    Hwang, Seungsu
    Chang, Jeongwook
    FUZZY SETS AND SYSTEMS, 2010, 161 (08) : 1117 - 1130
  • [32] Lipschitz (q, p)-Summing Maps from C(K)-Spaces to Metric Spaces
    Mastylo, Mieczyslaw
    Perez, Enrique A. Sanchez
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (04)
  • [33] Lipschitz (q, p)-Summing Maps from C(K)-Spaces to Metric Spaces
    Mieczysław Mastyło
    Enrique A. Sánchez Pérez
    The Journal of Geometric Analysis, 2023, 33
  • [34] Some topological properties of spaces of Lipschitz continuous maps on quasi-metric spaces
    Goubault-Larrecq, Jean
    TOPOLOGY AND ITS APPLICATIONS, 2020, 282
  • [35] Continuity of extensions of Lipschitz maps and of monotone maps
    Ciosmak, Krzysztof J.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (05):
  • [36] QUASICONTINUITY OF NEWTON-SOBOLEV FUNCTIONS AND DENSITY OF LIPSCHITZ FUNCTIONS ON METRIC SPACES
    Bjoern, Anders
    Bjoern, Jana
    Shanmugalingam, Nageswari
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (04): : 1197 - 1211
  • [37] METRIC DIFFERENTIABILITY OF LIPSCHITZ MAPS
    Bongiorno, Donatella
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 96 (01) : 25 - 35
  • [38] Perturbed smooth Lipschitz extensions of uniformly continuous functions on Banach spaces
    Azagra, D
    Fry, R
    Montesinos, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) : 727 - 734
  • [39] Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property
    Jeff Cheeger
    Bruce Kleiner
    Geometric and Functional Analysis, 2009, 19 : 1017 - 1028
  • [40] Sobolev extensions of holder continuous and characteristic functions on metric spaces
    Bjoern, Anders
    Bjoern, Jana
    Shanmugalingam, Nageswari
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (06): : 1135 - 1153