Modeling Water Flow and Solute Transport in Unsaturated Soils Using Physics-Informed Neural Networks Trained With Geoelectrical Data

被引:12
|
作者
Haruzi, P. [1 ]
Moreno, Z. [1 ]
机构
[1] Volcani Inst, Agr Res Org, Inst Soil Water & Environm Sci, LeZion, Israel
关键词
unsaturated flow and transport; physics-informed neural networks; hydro-geophysics; electrical resistivity tomography; infiltration; redistribution; RESISTIVITY TOMOGRAPHY ERT; ELECTRICAL-RESISTIVITY; HYDRAULIC CONDUCTIVITY; IRRIGATION; PREDICTION; AQUIFER; UNCERTAINTY; SIMULATION; STORAGE;
D O I
10.1029/2023WR034538
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate modeling of water flow and solute transport in unsaturated soils is of significant importance for precision agriculture, environmental protection and aquifer management. Traditional modeling approaches are considerably challenging since they require well-defined boundaries and initial conditions. Physics-informed neural networks (PINNs) have recently been developed to learn and solve forward and inverse problems also constrained to a set of partial differential equations and are more flexible than traditional modeling approaches. However, hydrological applications of PINNs used so far spatial measurements of hydraulic head, water content and/or solute concentrations, which were well distributed in the subsurface for training the system. Such measurements are hard to obtain in real-world applications. Here, we propose to train PINNs with non-invasive geoelectrical tools for simulating two-dimensional water flow and solute transport during infiltration and redistribution processes with unknown initial conditions. Two-dimensional flow and transport numerical simulations were used as benchmarks to examine the suitability of the described approach. Results have shown that the trained PINNs system was able to reproduce the spatiotemporal distribution of both water content and pore-water salinity during both processes with high accuracy, using five time-lapse geoelectrical measurements and matric head measurements at a single location. The trained PINNs system reconstructed the initial conditions of both state parameters at both processes. It was also able to separate the measured electrical signal into its two components, that is, water content and pore-water salinity. The subsurface geoelectrical tomograms were significantly improved compared to those obtained from a classical inversion of the raw geoelectrical data.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] On the Application of Physics-Informed Neural Networks in the Modeling of Roll Waves
    Martins da Silva, Bruno Fagherazzi
    Rocho, Valdirene da Rosa
    Dorn, Marcio
    Fiorot, Guilherme Henrique
    ADVANCES IN HYDROINFORMATICS, VOL 2, SIMHYDRO 2023, 2024, : 89 - 106
  • [32] Mean flow reconstruction of unsteady flows using physics-informed neural networks
    Sliwinski, Lukasz
    Rigas, Georgios
    DATA-CENTRIC ENGINEERING, 2023, 4 (01):
  • [33] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [34] Predicting Voltammetry Using Physics-Informed Neural Networks
    Chen, Haotian
    Katelhon, Enno
    Compton, Richard G.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (02): : 536 - 543
  • [35] Discontinuity Computing Using Physics-Informed Neural Networks
    Liu, Li
    Liu, Shengping
    Xie, Hui
    Xiong, Fansheng
    Yu, Tengchao
    Xiao, Mengjuan
    Liu, Lufeng
    Yong, Heng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [36] Discontinuity Computing Using Physics-Informed Neural Networks
    Li Liu
    Shengping Liu
    Hui Xie
    Fansheng Xiong
    Tengchao Yu
    Mengjuan Xiao
    Lufeng Liu
    Heng Yong
    Journal of Scientific Computing, 2024, 98
  • [37] Physics-informed neural networks for modeling atmospheric radiative transfer
    Zucker, Shai
    Batenkov, Dmitry
    Rozenhaimer, Michal Segal
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2025, 331
  • [38] Physics-Informed Neural Networks for AC Optimal Power Flow
    Nellikkath, Rahul
    Chatzivasileiadis, Spyros
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 212
  • [39] Thermal conductivity estimation using Physics-Informed Neural Networks with limited data
    Jo, Junhyoung
    Jeong, Yeonhwi
    Kim, Jinsu
    Yoo, Jihyung
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 137
  • [40] Assimilation of statistical data into turbulent flows using physics-informed neural networks
    Angriman, Sofia
    Cobelli, Pablo
    Mininni, Pablo D.
    Obligado, Martin
    Di Leoni, Patricio Clark
    EUROPEAN PHYSICAL JOURNAL E, 2023, 46 (03):