THE VANISHING VISCOSITY LIMIT ON A MODEL OF KAREIVA-ODELL TYPE IN 2D

被引:0
|
作者
Luo, Yong [1 ]
Jin, Chunhua [1 ]
Yin, Jingxue [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
来源
关键词
Key veords and phrases; Prey-taxis; classical solution; strong solution; vanishing viscosity limit; PREDATOR-PREY MODEL; REACTION-DIFFUSION EQUATIONS; GLOBAL EXISTENCE; SPATIAL HETEROGENEITY; BLOW-UP; CLASSICAL-SOLUTIONS; HAPTOTAXIS MODEL; STEADY-STATES; SYSTEM; AGGREGATION;
D O I
10.3934/dcdsb.2023116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper we invoke the idea of vanishing viscosity limit to bridge the strong solutions of two models in 2D case, i.e., a model of KareivaOdell type in which predators have a remarkable tendency of moving towards diffusible prey, and a model of Stevens-Othmer type where a species has an oriented movement toward a nondiffusing signal. In more detail, we first give in L & INFIN;(& omega;) a uniform-in-& epsilon; upper bound of the unique (for each fixed diffusion coefficient & epsilon; of prey) classical solution of a model of Kareiva-Odell type for any & epsilon; & ISIN; (0, 1). Then we make Lp estimates on the classical solutions to derive a quantitative description in the sense of strong solution. Via the estimates made for the Kareiva-Odell type model, we use Aubin-Lions lemma to show a convergence as & epsilon; & RARR; 0. Finally, we find that the limit of this convergence is a strong solution and also a unique classical solution of a corresponding Stevens-Othmer type model.
引用
收藏
页码:833 / 874
页数:42
相关论文
共 50 条
  • [1] On the vanishing viscosity limit for 2D incompressible flows with unbounded vorticity
    Nussenzveig Lopes, Helena J.
    Seis, Christian
    Wiedemann, Emil
    NONLINEARITY, 2021, 34 (05) : 3112 - 3121
  • [2] The vanishing viscosity limit for 2D Navier-Stokes in a rough domain
    Gerard-Varet, David
    Lacave, Christophe
    Nguyen, Toan T.
    Rousset, Frederic
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 : 45 - 84
  • [3] On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions
    Clopeau, T
    Mikelic, A
    Robert, R
    NONLINEARITY, 1998, 11 (06) : 1625 - 1636
  • [4] Partial vanishing viscosity limit for the 2D Boussinesq system with a slip boundary condition
    Liangbing Jin
    Jishan Fan
    Gen Nakamura
    Yong Zhou
    Boundary Value Problems, 2012
  • [5] Partial vanishing viscosity limit for the 2D Boussinesq system with a slip boundary condition
    Jin, Liangbing
    Fan, Jishan
    Nakamura, Gen
    Zhou, Yong
    BOUNDARY VALUE PROBLEMS, 2012,
  • [6] ON THE VANISHING VISCOSITY LIMIT OF A CHEMOTAXIS MODEL
    Chen, Hua
    Li, Jian-Meng
    Wang, Kelei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (03) : 1963 - 1987
  • [7] The vanishing viscosity limit for a dyadic model
    Cheskidov, Alexey
    Friedlander, Susan
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (08) : 783 - 787
  • [8] Vanishing viscosity limit of the 2D micropolar equations for planar rarefaction wave to a Riemann problem
    Gong, Guiqiong
    Zhang, Lan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [9] Vanishing viscosity limit and long-time behavior for 2D quasi geostrophic equations
    Berselli, LC
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (04) : 905 - 930
  • [10] Vanishing viscosity limit of the 2D micropolar equations for planar rarefaction wave to a Riemann problem
    Guiqiong Gong
    Lan Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71