Cross-Channel Specific-Mutual Feature Transfer Learning for Motor Imagery EEG Signals Decoding

被引:8
|
作者
Li, Donglin [1 ]
Wang, Jianhui [1 ]
Xu, Jiacan [2 ]
Fang, Xiaoke [1 ]
Ji, Ying [3 ]
机构
[1] Northeastern Univ, Dept Informat Sci & Engn, Shenyang 110000, Peoples R China
[2] Shenyang Jianzhu Univ, Coll Engn Training & Innovat, Shenyang 110000, Peoples R China
[3] Shenyang Ligong Univ, Coll Informat Sci & Engn, Shenyang 110000, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain-computer interface (BCI); convolutional neural network (CNN); motor imagery (MI); training tricks; transfer learning; CONVOLUTIONAL NEURAL-NETWORKS; BRAIN-COMPUTER INTERFACES; DOMAIN ADAPTATION; CLASSIFICATION; SYSTEM;
D O I
10.1109/TNNLS.2023.3269512
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, with the rapid development of deep learning, various deep learning frameworks have been widely used in brain-computer interface (BCI) research for decoding motor imagery (MI) electroencephalogram (EEG) signals to understand brain activity accurately. The electrodes, however, record the mixed activities of neurons. If different features are directly embedded in the same feature space, the specific and mutual features of different neuron regions are not considered, which will reduce the expression ability of the feature itself. We propose a cross-channel specific-mutual feature transfer learning (CCSM-FT) network model to solve this problem. The multibranch network extracts the specific and mutual features of brain's multiregion signals. Effective training tricks are used to maximize the distinction between the two kinds of features. Suitable training tricks can also improve the effectiveness of the algorithm compared with novel models. Finally, we transfer two kinds of features to explore the potential of mutual and specific features to enhance the expressive power of the feature and use the auxiliary set to improve identification performance. The experimental results show that the network has a better classification effect in the BCI Competition IV-2a and the HGD datasets.
引用
收藏
页码:13472 / 13482
页数:11
相关论文
共 50 条
  • [11] A Small-Sample Method with EEG Signals Based on Abductive Learning for Motor Imagery Decoding
    Zhong, Tianyang
    Wei, Xiaozheng
    Shi, Enze
    Gao, Jiaxing
    Ma, Chong
    Wei, Yaonai
    Zhang, Songyao
    Guo, Lei
    Han, Junwei
    Liu, Tianming
    Zhang, Tuo
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 416 - 424
  • [12] SCDAN: Learning Common Feature Representation of Brain Activation for Intersubject Motor Imagery EEG Decoding
    Fu, Boxun
    Li, Fu
    Ji, Youshuo
    Li, Yang
    Xie, Xuemei
    Shi, Guangming
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [13] Cross-Subject Motor Imagery Decoding by Transfer Learning of Tactile ERD
    Zhong, Yucun
    Yao, Lin
    Pan, Gang
    Wang, Yueming
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 662 - 671
  • [14] An efficient shallow convolutional decoding network for motor imagery EEG signals
    Li W.
    Xu G.
    Zhang K.
    Zhang S.
    Zhao L.
    Li H.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2023, 57 (10): : 11 - 19
  • [15] Temporal Pyramid Pooling for Decoding Motor-Imagery EEG Signals
    Ha, Kwon-Woo
    Jeong, Jin-Woo
    IEEE ACCESS, 2021, 9 : 3112 - 3125
  • [16] A novel motor imagery EEG decoding method based on feature separation
    Yang, Lie
    Song, Yonghao
    Ma, Ke
    Su, Enze
    Xie, Longhan
    JOURNAL OF NEURAL ENGINEERING, 2021, 18 (03)
  • [17] Spatial Feature Regularization and Label Decoupling Based Cross-Subject Motor Imagery EEG Decoding
    Zhou, Yifan
    Luo, Tian-jian
    Zhang, Xiaochen
    Han, Te
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII, 2024, 14437 : 407 - 423
  • [18] Subject-Adaptive Transfer Learning Using Resting State EEG Signals for Cross-Subject EEG Motor Imagery Classification
    An, Sion
    Kang, Myeongkyun
    Kim, Soopil
    Chikontwe, Philip
    Shen, Li
    Park, Sang Hyun
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT XI, 2024, 15011 : 678 - 688
  • [19] Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata
    Saugat Bhattacharyya
    Abhronil Sengupta
    Tathagatha Chakraborti
    Amit Konar
    D. N. Tibarewala
    Medical & Biological Engineering & Computing, 2014, 52 : 131 - 139
  • [20] Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata
    Bhattacharyya, Saugat
    Sengupta, Abhronil
    Chakraborti, Tathagatha
    Konar, Amit
    Tibarewala, D. N.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2014, 52 (02) : 131 - 139